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PREFACE

This dissertation was produced in accordance with guidelines which permit the inclusion as

part of the dissertation the text of an original paper or papers submitted for publication.

The dissertation must still conform to all other requirements explained in the �Guide for

the Preparation of Master�s Theses and Doctoral Dissertations at The University of Texas

at Dallas". It must include a comprehensive abstract, a full introduction and literature

review and a �nal overall conclusion. Additional material (procedural and design data as

well as descriptions of equipment) must be provided in su¢ cient detail to allow a clear and

precise judgment to be made of the importance and originality of the research reported. It

is acceptable for this dissertation to include as chapters authentic copies of papers already

published, provided these meet type size, margin and legibility requirements. In such cases,

connecting texts which provide logical bridges between di¤erent manuscripts are mandatory.

Where the student is not the sole author of a manuscript, the student is required to make an

explicit statement in the introductory material to that manuscript describing the student�s

contribution to the work and acknowledging the contribution of the other author(s). The

signatures of the Supervising Committee which precede all other material in the dissertation

attest to the accuracy of this statement.
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This dissertation addresses three important problems in Operations Management.

The �rst problem compares the two di¤erent product rollover strategies (single rollover vs.

dual rollover) when selling to strategic customers. With single rollover, when a new product

is introduced, the old product is phased out from the market. With dual rollover, the old

product remains in the market together with the new product. Strategic customers refer to

those customers who are forward-looking and consider future purchase opportunities when

making the decision. We investigate how customers behave under di¤erent product rollover

strategies. We also examine how the new product innovation and the proportion of strategic

customers in the market impact a �rm�s rollover strategy decision.

The second problem analyzes the impact of strategic customer behavior and rollover strategies

on a �rm�s product innovation decision. We analytically compare the �rm�s optimal innov-

ation level and pro�t in four settings: when the customers are myopic or strategic and when

single rollover or dual rollover is adopted for product transitions over time. In contrast with

the common wisdom and the extant marketing literature, we �nd that the strategic waiting
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behavior speeds up the innovation process.

The third problem compares site-to-store and store-to-site strategies for dual-channel in-

tegration. With site-to-store (resp., store-to-site) strategy, a �rm can �ll unmet orders in

the physical channel (resp., online channel) with the inventory in the online channel (resp.,

physical channel). We investigate how the product contribution margin, the channel de-

mand distribution shape and the number of retail stores in the physical channel impact

the �rm�s optimal integration strategy. We propose a heuristic to identify the appropriate

integration strategy when there are multiple retail stores. We apply our results to a circular

spatial model for dual-channel retailing systems.
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CHAPTER 1

INTRODUCTION

I have three essays in my dissertation: Analysis of Product Rollover Strategies in the

Presence of Strategic Customers (Chapter 2), Impact of Strategic Customer Behavior and

Rollover Strategies on Product Innovation (Chapter 3), and Site-to-Store or Store-to-Site?

Application of One-Way Transshipment in Dual-Channel Retailing (Chapter 4). In this

chapter, I will brie�y introduce them one by one as following.

1.1 Analysis of Product Rollover Strategies in the Presence of Strategic Cus-

tomers

Frequent product introductions are common especially in consumer electronic and fashion

industries. They emphasize the importance of dealing with the leftover inventory of the

old product when rolling over to the new product. In Chapter 2, we examine two primary

rollover strategies: single rollover and dual rollover. With dual rollover, a �rm keeps the

leftover old product in the market and sells it together with the new product. With single

rollover, a �rm removes the leftover old product and disposes it of outside the market.

We study a monopolistic �rm that decides the appropriate rollover strategy between

single and dual rollovers. The �rm sequentially sells two products (the old product �rst

and then the new product) in a market with both strategic and myopic customers. Myopic

customers do not consider future options. They buy the product on the spot as long as their

utility surplus of buying at that moment is non-negative. Di¤erent from myopic customers,

strategic customers are forward-looking. When strategic customers make decisions, they

consider not only whether to buy the product, but also when to buy it and which version

to buy (i.e., buy the current product or wait for the new product). Therefore, compared to

1
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myopic customers, strategic customers have a tendency to wait, either for the new product

or for a possible markdown of the leftover old product.

Compared to dual rollover, the primary disadvantage of single rollover is the revenue loss

from the leftovers. This is because the disposal value of the leftover items outside the market

is usually lower than their selling price in the market. There are two primary drawbacks

of dual rollover: cannibalization e¤ect and postponement e¤ect. With both products in

the market, the sale of the new product may be cannibalized by the old product. Also,

compared to single rollover, the presence of the old product in the market gives strategic

customers more incentive to wait.

We investigate how customers behave under di¤erent rollover strategies and how di¤erent

customer behaviors in turn impact the �rm�s rollover strategy. We �nd that the innovation

of the new product and the proportion of strategic customer are the key factors determining

the �rm�s optimal rollover strategy. Speci�cally, the �rm should consider adopting single

rollover when the new product innovation is low and the proportion of strategic customers

is high. Interestingly and counterintuitively, we �nd that the revenue loss of the leftovers �

a so-called primary �disadvantage�of single rollover may help a �rm to earn a higher pro�t

compared to dual rollover. In addition, a �rm may su¤er from a high value disposal option

for the old product. Liang et al. (2011a) is a working paper based on Chapter 2.

1.2 Impact of Strategic Customer Behavior and Rollover Strategies on Product

Innovation

Innovation is one of the most important processes for �rms to create new markets, transform

industries, and sustain growth. There is a common saying: either you innovate or you die.

Therefore, we cannot overemphasize the importance of innovation.

In addition to the importance of innovation for �rms�development, another strong motiv-

ation for us to study this question is the inconsistency between what we observe in practice

and our typical logic think along with the extant literature. A typical logic think is that
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since strategic customers are forward-looking, a �rm has a lower pricing power with stra-

tegic customers than with myopic customers. The lower pricing power reduces the �rm�s

return on innovation investment and then reduces its incentive to innovate. Dhebar (1994)

supports this conventional wisdom by showing that strategic customer behavior imposes a

demand-side constraint on the rate of product improvement. However, from what we ob-

serve in practice, with increasing number of strategic customers in the market, companies

in the fashion and high-tech industries are spending a lot in R&D.

In Chapter 3, with this consistency in mind, we take the innovation level as the �rm�s

decision variable and compare the �rm�s optimal innovation level and pro�t under four

di¤erent settings: when customers are myopic or strategic and single rollover or dual rollover

is adopted. We show that when customers are myopic, (1) single rollover hurts the �rm�s

pro�t but accelerates the innovation process and (2) the innovation level and pro�t cannot

be increased simultaneously with any rollover strategy. In contrast, when customers are

strategic, the �rm can provide a more innovative product while earning a higher pro�t by

adopting an appropriate rollover strategy. This underscores the importance of choosing the

appropriate rollover strategy when selling to strategic customers. Surprisingly, we �nd that

the strategic waiting behavior speeds up the innovation process. Liang et al. (2011b) is a

working paper based on Chapter 3.

1.3 Site-to-Store or Store-to-Site? Application of One-Way Transshipment in

Dual-Channel Retailing

In a few short years, with dramatic development of online shopping, almost all traditional

�brick-and-mortar�retailers such as Walmart, J.C. Penney and Target have already opened

new virtual online channels and have become �brick-and-click�retailers. To these retailers,

multi-channel retailing becomes a business imperative, and how to integrate the online

channel with their traditional physical channel is key to the success of their multi-channel

retailing strategy.
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In Chapter 4, we study two typical dual-channel integration strategies: site-to-store and

store-to-site. With the store-to-site strategy, a retailer use its inventory in the (physical)

retail stores to ful�ll the online orders when the online warehouse (i.e., the warehouse

designed to ful�ll the online orders) is out of stock. With site-to-store strategy, a retailer

makes the inventory in the online warehouse available to its retail store customers. Specially,

a customer who is not able to �nd the desired product in a retail store, has the option to

order the product from the retailer�s web site. The customer can pick up the product from

the retail store or have it home delivered.

We �nd that with one retail store, when only one channel should have inventory, it

is the channel with stochastically larger or less uncertain demand. Otherwise, with both

channels carrying inventory, the optimal channel integration depends on the product con-

tribution margin and the channel demand distribution shape. When there are multiple

retail stores, the site-to-store (resp., store-to-site) strategy becomes more attractive for

high-margin (resp., low-margin) products with larger number of retail stores. We also �nd

that the integration strategy decision makes a signi�cant di¤erence if at least one of the

following conditions is satis�ed: (1) the product contribution margin is either very high or

very low, (2) the transshipment cost is high, (3) the demand correlation between the two

channels is not strongly positive, and (4) the demand uncertainty di¤erence between the

two channels is large.

We propose a heuristic that only requires a comparison of the online demand standard

deviation and the sum of demand standard deviations of retail stores in identifying an

e¤ective integration strategy, when there are multiple retail stores in the physical channel.

Finally, we apply our results to a circular spatial model for dual-channel retailing systems

and obtain insights on the impact of customer purchasing behavior on integration strategy

selection. Liang et al. (2011) is a working paper based on Chapter 4.
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CHAPTER 2

ANALYSIS OF PRODUCT ROLLOVER STRATEGIES IN THE PRESENCE OF

STRATEGIC CUSTOMERS

2.1 Synopsis

Frequent product introductions are common in many industries, such as consumer electron-

ics, computers and apparel. Fashion retailers usually replenish their stock with new designs

at least once per season. Many �rms view frequent product introductions as important ways

to increase market share and sustain growth. They manage the phase-out of an old product

along with the introduction of a new product that replaces the old one.

Ideally, the introduction of the new product should coincide with the depletion of the old

product inventory. However, this ideal is di¢ cult to achieve in an uncertain environment.

In reality, a �rm usually needs to deal with the leftover inventory of the old product when

rolling over to the new product. In this chapter, we study two primary rollover strategies:

single (-product) rollover and dual (-product) rollover. With dual rollover, the old product

remains in the market together with the new product. With single rollover, when the new

product is introduced, the old product is phased out from the market and can be disposed

of in various ways. Fire sales, dismantling products for spare parts, recycling the material

for future use and write-o¤s are all common ways to dispose of leftover inventory. Also,

more and more U.S. companies are relying on overseas markets to clear their leftovers,

which can avoid cannibalizing their regular retail channel in the U.S. market (Kavilanz

2008). Using di¤erent introduction dates for the new product in di¤erent regions worldwide

facilitates the implementation of single rollover. Even the equipment that is obsolete in

developed countries can be sold in less-developed countries. The leftover inventory can also

be sold at discount stores such as TJ Maxx and Marshalls, outlet malls, and Web sites

5
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like Overstock.com. Sometimes, �rms donate unsold items for charitable tax deductions.

For additional approaches to disposing of unsold inventory, see Tibben-Lembke (2004). The

main drawback of single rollover is that the revenue from disposing of leftover items under

single rollover is usually lower than that under dual rollover.

Dual rollover, despite obtaining a higher price than the disposal value for the leftover

old products by keeping them in the market, has two important drawbacks. The �rst is the

cannibalization e¤ect. With both products in the market, the old product may cannibalize

sales of the new product, especially when the innovation (improvement of the new product

over the old product) is not very high. The second is the postponement e¤ect. Strategic

customers are common in markets for durable goods with rapid innovation, like high-tech

and fashion products. They time their purchase decisions and select the product that gives

them the highest surplus. Instead of purchasing the current version, strategic customers

anticipating the new (product) version may wait. Besides, they may also wait for the

markdown of the old version. Therefore, when a strategic customer is making the purchase

decision, she takes into account the future opportunity of buying the new version and the

marked-down old version that is available under dual rollover. Thus, compared to single

rollover, the presence of the old product in the market gives strategic customers more

incentive to delay their purchase. Articles in the media such as Arends (2010) discuss the

rational for waiting and thus increase the number of strategic customers.

In this chapter, we explore the performance of single rollover in eliminating cannibaliz-

ation and mitigating postponement e¤ects, and answer the following questions: Can a �rm

use single rollover to earn a higher pro�t via reducing the two e¤ects? If yes, when can

single rollover increase the �rm�s pro�t and by how much? We develop a two-period model

of a monopolistic �rm that sells an old version in period 1 and introduces a new version in

period 2 to a market with uncertain size and strategic customers. The �rm needs to decide

rollover strategy before period 1 as well as prices and ordering quantities in both periods.

Our work contributes to both the strategic customer behavior research in operations

management (OM) and the product rollover strategy literature by studying the interplay
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between strategic waiting behavior and di¤erent rollover strategies. The strategic waiting

research in operations management most relevant to ours has been conducted by Su and

Zhang (2008), Cachon and Swinney (2009), and Lai et al. (2010). They study the mechan-

isms to mitigate strategic waiting behavior when demand is uncertain. Su and Zhang (2008)

consider quantity and price commitments and show that these can be achieved by various

contracts in a supply chain. Cachon and Swinney (2009) explore quick response strategy

to better match supply and demand to reduce markdown chance. Lai et al. (2010) show

that posterior price matching can substantially improve the �rm�s pro�t when the fraction

of strategic customers is not too low and their valuation decrease over time is neither too

low nor too high. In our model, we study how a �rm can use single rollover to mitigate

strategic customers�waiting behavior for the �rst time in the OM literature. These three

papers and others (Su and Zhang (2009), Su (2008), Cachon and Swinney (2011), Liu and

van Ryzin (2008), Aviv and Pazgal (2008), Yin et al. (2009), Prasad et al. (2010), Huang

and Van Mieghem (2010), and Özer and Zheng (2011)) usually focus on the scenario where

a �rm sells a product in the regular season and then marks down the product in the �nal

sale. But unlike our model, they do not discuss if the �rm is willing to sell the leftover

product in the market with or without markdown, or the product version introductions

leading to cannibalization of sales. Toktay et al. (2011), Erzurumlu et al. (2010) and

Khawam and Spinler (2011) consider product introduction strategies, but their focus is not

product rollover strategy.

Despite their importance, product rollover strategies have only recently received some

attention in the literature. Billington et al. (1998) and Erhun et al. (2007) provide ma-

nagerial insights derived from hands-on experience. To our knowledge, although di¤erent

terminologies may be used, �ve papers consider analytical comparisons of di¤erent rollover

strategies: Levinthal and Purohit (1989), Lim and Tang (2006), Ferguson and Koenigs-

berg (2007), Arslan et al. (2009), and Koca et al. (2010). The last four focus on the

cannibalization e¤ect and/or the product introduction and phase-out times. Furthermore,

customers are neither strategic nor explicitly modeled, and so these paper do not consider
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the important interaction between rollover strategy and strategic waiting behavior. Lev-

inthal and Purohit (1989) consider both cannibalization and postponement e¤ects but with

a deterministic demand and without explicitly modeled customers. In a quite di¤erent set-

ting, they show that the single rollover is always better than dual rollover. Our model, on

the other side, shows that due to demand-supply mismatch, dual rollover can outperform

single rollover.

We consider the performance of single rollover under three innovation cases: high, me-

dium and low. We show that in all innovation cases, the �rm can increase its pro�t by

adopting single rather than dual rollover under certain conditions, especially when the pro-

portion of strategic customers is high. We �nd that the innovation level strongly a¤ects

single rollover�s performance in mitigating waiting behavior. In the literature for only one

product version, the �rm can often induce all strategic customers to buy early while extract-

ing all their utility by using some mechanisms (e.g., posterior price matching in Lai et al.

(2010) and price commitment in Su and Zhang (2008)). Without any old products left in

the market under single rollover, we would expect that the �rm can achieve the same result

(i.e., induce early purchase while capturing all the utility) as in the literature. However, in

the two-version context, this is true only when the replacement of the old version with the

new version is not possible. When the innovation is high enough that customers who have

already bought the old version are willing to replace it with the new one, strategic customers

may still wait even when they certainly know that under single rollover they cannot access

the leftover old version. This is because if the market is saturated (i.e., many customers

in the market have already bought the old version), instead of keeping the price high to

capture all the utility from the customers who have not bought the old version, the �rm

may �nd it more pro�table to lower the price of the new version to induce replacements.

This creates the waiting incentive of strategic customers. That is, with a high innovation,

the �rm cannot eliminate waiting behavior even though it commits not to sell any leftover

old version in the market. In practice, especially in the consumer electronics industry with

a saturated market, the price of the new version may sometimes be even less than or equal
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to the original price (before its markdown) of the old version. This can lead to a higher

customer surplus from buying the new version rather than the old version.

Another interesting �nding is that the disposal value of the leftover old version under

single rollover plays di¤erent roles under di¤erent innovation levels. With low and medium

innovations, the �rm bene�ts from a high disposal value, which is intuitive. However, when

the innovation is high, the �rm may su¤er from a high disposal value. While the result

appears to be counterintuitive, it arises because a higher disposal value leads directly to

higher inventory of the old version, which implies a higher sale in period 1. With more

customers who carry over the old version from period 1 to period 2, the market in period 2

is more saturated. So, instead of pricing the new version high to sell it to only the high-end

customers who have not bought the old version in period 1, the �rm tends to price it low

in order to induce replacements. This increases customers�possibility of getting a positive

surplus by waiting. Thus, in addition to the direct, economical bene�t of disposal value,

there is an indirect, behavioral impact as well: higher disposal value aggravates strategic

behavior. When the proportion of strategic customers is high, the indirect behavioral impact

may outweigh the direct impact and thus results in a lower pro�t.

We �nd that depending on the innovation level, the �rm has di¤erent product introduc-

tion policies. Speci�cally, when the innovation is high, the �rm can introduce both versions

hoping that customers will purchase both of them. However, when replacements are not pos-

sible (i.e., the innovation is low or medium), as long as the innovation of the new version can

compensate the �rm�s pro�t discounting and the customers�value depreciation over time,

the �rm should skip the old version to eliminate the cannibalization of the more pro�table

new version. Roughly speaking, a fast innovating �rm can introduce both versions since it

can expect to receive payments twice from repeat customers; a moderately innovating �rm

may consider skipping the old version and introducing the new version directly even though

it may need to wait some time for the new version to be ready; as long as customers value

the current version, a slowly innovating �rm should introduce it as soon as possible to avoid

the loss from time depreciation.
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2.2 Model Description

We model a pro�t-maximizing �rm that may introduce a product V1 in period 1 and its

upgraded version V2 in period 2. Prior to period 1, the �rm must choose between two

product rollover strategies: single or dual. In either strategy, only V1 is sold in period 1.

In period 2, under single rollover, only V2 is available in the market, whereas, under dual

rollover, both V2 and the leftover V1 are available.

We set the innovation levels of V1 and V2 as 1 and (1 + �), respectively, where � � 0

denotes the additional innovation from V1 to V2. For example, � may represent the number

of new functions introduced in V2. The higher � is, the higher the customers are willing to

pay. We assume that the �rm makes a credible commitment of its rollover strategy prior

to period 1. This is reasonable in view of the fact that the rollover strategy can be veri�ed

ex post and the �rm is averse to the loss of reputation resulting from reneging. Also, a

rollover strategy requires arrangements in advance. For example, the �rm may need to plan

for the required shelf space for the potential leftover V1 in period 2. In single rollover, if the

phased out V1 will be sold in overseas markets, then resources such as transportation and

storage space may have to be lined up ahead of time. Thus, any deviation from a committed

strategy at the last moment could be prohibitively expensive.

The market consists of three distinct customer segments: strategic customers, myopic

customers, and bargain hunters. Customers are assumed to be homogenous within each

segment. Strategic and myopic customers are high-end customers, and bargain hunters are

low-end customers. High-end customers�valuation of using V1 in both periods is v and

their valuation of using V1 in period 2 is �v, where 0 < � < 1. The parameter � captures

the value depreciation due to negative feeling of not being among the �rst adopters of the

product and/or the loss of utility in period 1. Consequently, high-end customers�valuation

of V2 in period 2 is �v(1+ �). The market size for high-end customers is a random variable

N with c.d.f. F (�) and density f(�). We assume that a fraction � of high-end customers are

strategic and the rest are myopic.
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Each strategic customer holds a belief of the waiting surplus Wc �the surplus that every

strategic customer can get by waiting. When making buy/wait decisions in period 1, each

strategic customer takes into account the option of buying in period 2. Throughout the

chapter, we use the terms buying now and waiting for strategic customers�buying and not

buying V1 in period 1, respectively. Myopic customers, unlike strategic customers, decide

to buy or not buy in period 1 without considering the waiting option. We assume that

customers buy in the current period whenever the surpluses of buying now and waiting are

tied or the surpluses of buying and not buying are tied. Therefore, strategic customers

buy V1 in period 1 if the surplus (v � p1) of buying now, where p1 is the price of V1 in

period 1, is not less than the waiting surplus Wc. We should point out that when buying

now, strategic customers have the option of replacing V1 with V2 in period 2. However, V2

brings in a lower utility �v� to the repeat customers compared to the utility �v(1 + �) to

the customers who do not buy in period 1. This implies that replacement, if any, leads to

non-positive surplus. This is consistent with the pricing strategies in period 2 as shown in

Propositions 2.3.1, 2.3.3, 2.4.1 and 2.4.3. Therefore, we keep the surplus of buying now as

(v � p1), instead of introducing another belief for the replacement surplus, which would be

equal to zero in equilibrium. Myopic customers buy V1 in period 1 if their surplus (v�p1) is

non-negative. Consequently, (v�Wc) and v are strategic customers�and myopic customers�

reservation prices in period 1, respectively.

Bargain hunters, unbounded in number, value the product so low that they only buy it

on sale. Therefore, nothing is sold to these customers under single rollover. On the other

hand, under dual rollover, they buy V1 in period 2 if the marked-down price is not larger

than their value � for the leftover V1. We assume 0 � � < �v, where we recall that �v is

the high-end customers�value for V1 in period 2.

In our context, high-end customers can be grouped di¤erently in each period. In period

1, the groups are myopic customers and strategic customers as mentioned above. In period

2, without a next period to plan for, all customers are myopic. Instead, the purchase history

of the customers can be used to split them into two groups. Some customers do not buy V1
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in period 1 and the others do. The former and latter customers are termed, respectively, as

period-1 non-buyers (P1NB) and period-1 buyers (P1B).

We assume that the unit production cost c is the same for both versions. This is reason-

able particularly for high-tech and fashion products. For example, although the price of a

16GB iPad with both Wi-Fi and 3G was $130 higher than that of a 16GB iPad with Wi-Fi

only, the production cost $306.50 of the former was just $16 higher than $290.50 of the

latter (Keizer 2010). Under single rollover, in period 2 the �rm receives the disposal value

� � 0 from each leftover V1. Under dual rollover, in period 2 the lowest price that the �rm

will charge for any leftover V1 is �, since bargain hunters clear all the leftover V1 at such

a price. We assume �; � < c to avoid ordering an in�nite amount. We also assume � < �

as the disposal value of the leftover V1 under single rollover is usually lower than its selling

price in the market. We refer to (�� �) as the market-disposal spread. Inventory remaining

at the end of period 2 has zero value. The �rm discounts the pro�t in period 2 by a factor

of �; 0 < � < 1.

The �rm knows v, �, �, �, �, �, c, and F (:), high-end customers know v, �, and �, and

bargain hunters know �. The �rm holds a belief Rf of the strategic customers�reservation

price for V1 in period 1. Privately formed, Rf is not accessible to customers, nor is Wc to

the �rm.

2.2.1 Sequence of Events

The sequence of events is speci�ed in Figure 2.1. Before period 1, the �rm announces its

rollover strategy. Holding a belief Rf in period 1, the �rm decides price p1 and stocking

level q1 for V1. Strategic customers consider the future options, so Rf � v. In addition,

customers do not buy if the price is higher than their reservation price, so we must have

p1 � v. For Rf < v, the period-1 demand is

D1 =

8<: N if p1 � Rf ;

(1� �)N if Rf < p1 � v:
(2.1)
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Figure 2.1. Sequence of Events

The sales in period 1 is S = minfq1; D1g. Hence, the �rm sets either p1 = v or p1 = Rf to

maximize its total pro�t. If Rf = v, then D1 = N . Because Rf = v occurs only in special

cases, we focus on Rf < v and deal with the special cases as they occur.

After the �rm announces its rollover strategy and p1, all high-end customers arrive in

period 1. They observe p1, but not q1. Should they �nd V1 in stock, strategic customers

decide whether to buy now or wait and myopic customers decide whether to buy now or

not, based on their respective reservation prices.

N and correspondingly S and D1 are realized at the end of period 1, respectively, as n; s

and d1. We assume that the �rm can assess the demand d1 of V1 at the end of period 1.

When there is no stockout, d1 equals the sales s. When some customers cannot get V1 due

to stockout, their visits, inquiries and complaints help the �rm to estimate d1. Since the

�rm sets p1 and observes d1 2 f(1��)n; ng, it can deduce the realized n from d1 at the end

of period 1 by

n =

8<: d1 if p1 = Rf ;

d1=(1� �) if p1 = v:
(2.2)

In period 2, if single rollover is adopted, then the �rm decides price p2 and stocking level
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q2 for V2; if dual rollover is adopted, then it decides p2, q2 for V2 and marked-down price

p01 for the leftover V1.

Under single rollover, P1NB buy V2 if the surplus �v(1+�)�p2 is nonnegative; otherwise,

they buy nothing. Under dual rollover, P1NB buy V2, V1 or nothing based on their surplus

rankings. For example, if �v(1+�)�p2 > �v�p01 > 0, then P1NB prefer V2 to V1. Buying

nothing, which provides zero surplus, is their last option. When both the leftover V1 and

V2 give P1NB the same surpluses, that is �v(1+ �)�p2 = �v�p01, we assume that the �rm

can induce them to buy whichever version the �rm prefers to sell. One explanation is that

a salesperson can in�uence a customer�s purchase decision when she is indi¤erent between

these two versions. In the remainder of the chapter, we say that P1NB prefer a particular

version when they have a higher surplus from purchasing that than the other, or when they

are indi¤erent between the two and the �rm induces them to buy the particular version.

Under both rollover strategies, P1B purchase V2 to replace V1 if the incremental value

�v(1 + �) � �v from V1 to V2 is greater than or equal to p2, that is p2 � �v�; otherwise,

they continue using V1 in period 2. Bargain hunters can a¤ord V1 if p01 � �.

When both P1NB and bargain hunters want V1 in period 2, P1NB have purchase priority

over bargain hunters. Similarly, P1NB have purchase priority over P1B. Customers within

each group have equal priority. Similar prioritization is used in Su and Zhang (2008), Cachon

and Swinney (2009), and Lai et al. (2010). In addition, under dual rollover, P1NB who

have two versions to choose from can switch to their second best version if they cannot get

their preferred version due to a stockout, as we formalize in (2.13) and (2.14) below. Table

2.1 summarizes the customers�decisions.

Table 2.1. Customers�Decision
Period 1 Period 2

Single/Dual Rollovers Single Rollover Dual Rollover
Strategic Wait P1NB V2 or nothing V1 or V2 or nothing
customers Buy V1 P1B V2 or keep using V1 V2 or keep using V1
Myopic Not buy P1NB V2 or nothing V1 or V2 or nothing
customers Buy V1 P1B V2 or keep using V1 V2 or keep using V1
BH N/A BH N/A V1 or nothing



www.manaraa.com

15

2.2.2 Rational Expectation Equilibrium (REE)

We �rst describe the equilibrium under single rollover. In period 2, the �rm decides q2 and

p2 by solving

Firm�s optimality in period 2: (q2(y); p2(y)) 2 argmax
q2; p2

�S2 (q2; p2jy); (2.3)

where �S2 (q2; p2jy) is the �rm�s pro�t in period 2 and the �rm�s information set at the end

of period 1 is y = fq1; p1; d1; Rfg. We let Y = fq1; p1; D1; Rfg. In period 2, all customers

are myopic and their alternatives are summarized in Table 1. Because customers�decisions

in period 2 are relatively straightforward given the prices, we implicitly incorporate their

decisions through the �rm�s demands in period 2.

Holding a belief Rf in period 1, the �rm�s expected total pro�t is E[�S(q1; p1)] =

E[p1minfq1; D1g� cq1+�maxq2;p2 �S2 (q2; p2jY )]; where the �rst two terms together denote

the �rm�s pro�t in period 1. The �rm decides q1 and p1 by solving the �rm�s optimality

problem: (q1(Rf ); p1(Rf )) 2 argmaxq1;p1 E[�S(q1; p1)]. Because we have only two possible

values for p1 (v or Rf), we can break down the �rm�s optimization problem in period 1 into

the following two optimization problems:

Firm�s quantity optimality in period 1:

8<: If p1 = v; q1(Rf ) 2 argmaxq1 E[�S(q1; v)];

If p1 = Rf ; q1(Rf ) 2 argmaxq1 E[�S(q1; Rf )];
(2.4)

Firm�s pricing optimality in period 1: p1(Rf ) 2 arg max
p12fv;Rfg

E[�S(q1(Rf ); p1)]: (2.5)

We use � 2 f0; 1g to capture strategic customers�purchase decisions in period 1. � = 1

and � = 0, respectively, denote buying now and waiting. We have the following condition

Strategic customer�s optimality: � = 1 () v � p1 � Wc: (2.6)

As myopic customers always buy early with either value of p1, we haveD1 = (1��)N+��N .
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We adopt the commonly used concept of rational expectation equilibrium. Under ra-

tional expectations, beliefs Wc and Rf must be consistent with their outcomes. So, for any

given q1, p1, �, Wc and Rf , which satisfy (2.4)-(2.6), the two conditions must hold:

Waiting surplus rational expectation: Wc = w(q1; p1; �); (2.7)

Reservation price rational expectation: Rf = v �Wc; (2.8)

where w(q1; p1; �) is the (actual) expected waiting surplus for each waiting customer. From

(2.7), the strategic customers�belief of the waiting surplus is consistent with the expected

waiting surplus in equilibrium. According to (2.8), the �rm�s belief of the strategic custom-

ers�reservation price is consistent with the reservation price from the strategic customers�

point of view.

Throughout the chapter, if there are period-2 functions (q2(y); p2(y)) and period-1 num-

bers (q1; p1; �;Wc; Rf ) satisfying conditions (2.3)-(2.8), we call it a rational expectation

equilibrium (REE) under single rollover. An REE under dual rollover consists of period-2

functions (q2(y); p2(y); p01(y)) and period-1 numbers (q1; p1; �;Wc; Rf ) satisfying conditions

(2.6)-(2.8) and (2.9)-(2.11):

Firm�s optimality in period 2: (q2(y); p2(y); p
0
1(y)) 2 arg max

q2; p2; p01

�D2 (q2; p2; p
0
1jy): (2.9)

Firm�s quantity optimality in period 1:

8<: If p1 = v; q1(Rf ) 2 argmaxq1 E[�D(q1; v)];

If p1 = Rf ; q1(Rf ) 2 argmaxq1 E[�D(q1; Rf )];
(2.10)

Firm�s pricing optimality in period 1: p1(Rf ) 2 arg max
p12fv;Rfg

E[�D(q1(Rf ); p1)]; (2.11)

where E[�D(q1; p1)] = E[p1minfq1; D1g � cq1 + �maxq2;p2;p01 �
D
2 (q2; p2; p

0
1jY )].

The (actual) expected waiting surplus w(q1; p1; �) for each waiting customer can be

computed by

w(q1; p1; �) =

Z 1

0

w(q1; p1; �; q2; p2; p
0
1jn)f(n)dn; (2.12)
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where w(q1; p1; �; q2; p2; p01jn) is the (actual) average waiting surplus for each waiting cus-

tomer given the market size n. We use the dependence of q2; p2 and p01 on q1; p1; � and

n when performing the integration. We use the word �average�because of the rationing

among customers as detailed in (2.13)-(2.15) below. For single rollover, we set p01 = 1 in

view of the fact that there is no V1 available in period 2.

Under dual rollover, if neither version gives P1NB a positive surplus, then obviously

we have w(q1; p1; �; q2; p2; p01jn) = 0. Otherwise, at least one version gives P1NB a positive

surplus, and w(q1; p1; �; q2; p2; p01jn) is computed by (2.13) or (2.14) below. If P1NB prefer

the leftover V1 to V2 in period 2, then

w(q1; p1; �; q2; p2; p
0
1jn)

= minfq1 � s
n� s ; 1g| {z }

Prob. of getting V1

(�v � p01)

+ [1�minfq1 � s
n� s ; 1g] minf

q2
(n� q1)+

; 1g| {z }
Prob. of not getting V1 but getting V2

[�v(1 + �)� p2]; (2.13)

where (q1� s) is the number of leftover V1, (n� s) is the number of P1NB, and (n� q1)+ =

((n� s)� (q1� s))+ is the number of P1NB who cannot get V1 due to a stockout in period

2. If P1NB prefer V2 to the leftover V1 in period 2, then

w(q1; p1; �; q2; p2; p
0
1jn)

= minf q2
n� s; 1g| {z }

Prob. of getting V2

[�v(1 + �)� p2]

+ [1�minf q2
n� s; 1g] minf

q1 � s
(n� s� q2)+

; 1g| {z }
Prob. of not getting V2 but getting V1

(�v � p01); (2.14)

where (n� s� q2)+ is the number of P1NB who cannot get V2 due to a stockout.

Under single rollover, because there is no V1 in the market, P1NB can only purchase V2.
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Therefore, given the market size n, if the utility surplus of purchasing V2 is non-negative,

we have

w(q1; p1; �; q2; p2;1jn) = minf
q2
n� s; 1g[�v(1 + �)� p2]: (2.15)

We divide the value of innovation � into three ranges: high � � c=�v, medium (c �

�)=�v � � < c=�v, and low � < (c� �)=(�v). P1B purchase V2 only if p2 � �v�, where �v�

is the incremental value of replacing V1 with V2. The �rm can set p2 = �v� pro�tably only

when �v� � c, which gives the �rst critical value (c=�v) for �. Under dual rollover, if V1 is

priced low as � to target bargain hunters in period 2 and V2 is priced high, P1NB may go

for V1 to get the surplus (�v� �) rather than purchase V2. To attract P1NB from V1, the

highest price which the �rm can charge for V2 is (�v� + �). The �rm can set p2 = �v� + �

pro�tably only when �v�+ � � c, which provides the second critical value (c� �)=�v for �.

Before our analysis, we make some observations about possible prices in period 2. In

period 2 there are only two possible prices �v and � for any leftover V1 and only three

possible prices �v�, �v� + �, and �v(1 + �) for V2 in equilibrium. Intuitively, �v and �

are the highest prices for V1 to target P1NB and bargain hunters in period 2, respectively.

Similarly, �v�, �v� + �, and �v(1 + �) are the highest prices for V2 in period 2, to target

P1B, to attract P1NB from V1 when p01 = �, and to target P1NB, respectively. For ease

of exposition, we refer to �v and � as high (H) and low (L) price for V1, respectively, and

�v(1+�), �v�+�, and �v� as high (H), medium (M), and low (L) price for V2, respectively,

in period 2.

2.3 Low and Medium Innovations

With low (� < (c � �)=(�v)) and medium ((c � �)=�v � � < c=�v) innovations, it is not

pro�table for the �rm to price V2 low enough to target P1B. Consequently, there are two

groups of customers ((n � s) P1NB and unlimited bargain hunters) to consider in period

2. There are (q1 � s) units of leftover V1 from period 1. Period-1 non-buyers choose from

buying V1, V2, or nothing, depending on their surplus rankings as we discuss in Section
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2.2.1. Bargain hunters cannot a¤ord V2 and buy V1 only if its price is less than or equal

to �.

2.3.1 Dual Rollover

We assume � � (c� �v)=(�v), that is, c � �v(1 + �) to avoid the case in which V2 cannot

be pro�tably o¤ered. We present the low innovation case below in detail and later discuss

only the di¤erence between low and medium innovation cases for brevity. We analyze the

problem in a backward manner.

The third row of the table in Proposition 2.3.1 below deals with the �rm�s pricing and

stocking level decisions in period 2 in four cases with low innovation. The four cases are

characterized according to the price p1 2 fRf ; vg as well as the relationship between q1 and

the realized market size n at the end of period 1. Also obtained in Proposition 2.3.1 are

the expected waiting surpluses (the fourth row of the table) in each of the two cases of p1,

provided that the �rm follows the pricing and stocking level decisions listed in the third row

of the table.

Proposition 2.3.1 The �rm�s period-2 optimal decisions are:

p1 = Rf p1 = v

n � q1 n > q1 n � �
�v�+�(1��)q1 n > �

�v�+�(1��)q1

L-H H-H L-H H-H

w(q1; Rf ; 1) = (�v � �)F (q1) w(q1; v; 0) = (�v � �)F
�

�
�v�+�(1��)q1

�
In Proposition 2.3.1, L-H denotes p01 = �, p2 = �v(1 + �) and q2 = (n � q1)+ with the

corresponding pro�t �D2 = [�v(1 + �) � c](n � q1)+ + �(q1 � s); H-H denotes p01 = �v,

p2 = �v(1 + �) and q2 = (n� q1)+ with �D2 = [�v(1 + �)� c](n� q1)++ �v[minfn; q1g� s].

Note that the nomenclature for prices is consistent with our discussion at the end of Section

3.2, and similar naming conventions are used later.
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According to Proposition 2.3.1, with low innovation the �rm should always price V2 high

and leave a surplus of zero to the waiting customers in period 2. Comparing the conditions

for the two pricing strategies, we know that when the high-end market is highly saturated

(n � q1 when p1 = Rf and n � �
�v�+�(1��)q1 when p1 = v), the �rm should price V1 low to

target bargain hunters in period 2. Consequently, strategic customers get a positive surplus

by delaying their purchases. When the high-end market is less saturated, the �rm prices V1

high to leave the waiting customers with a surplus of zero. Therefore, when the innovation

is low, the positive surplus, if any, is always obtained from the deeply marked-down V1.

To ensure the existence of an REE, we assume that the high-end market size N satis�es

the monotone scaled likelihood ratio (MSLR) property, i.e., for any � 2 [0; 1] and x in the

support of N , f(�x)=(f(x)) is monotone in x. The MSLR property is satis�ed by gamma,

Weibull, uniform, exponential, power, beta, chi, and chi-squared distributions. It has also

been assumed in Cachon and Swinney (2009) and Lai et al. (2010).

Period-1 price can be high p1 = v or low p1 = Rf . These two cases are detailed in Lemmas

6.1.1 and 6.1.2 in the appendix. Proposition 2.3.2 below characterizes the REE under dual

rollover and the �rm�s optimal price in period 1 by comparing its pro�ts under the high and

low prices. Here the superscript L;D means �Low innovation and dual rollover�. We use

superscript � to denote the values in an REE.

Proposition 2.3.2 (Low Innovation) Under dual rollover, there exists a unique REE.

In addition, a �L;D exists such that if � � �L;D, then the �rm sets the high price p�1 = v;

otherwise, it sets the low price p�1 = Rf .

The �rm chooses between lowering the price in period 1 to induce all high-end customers

to buy and keeping the price high to induce only myopic customers to buy. Proposition

2.3.2 states that the �rm should focus on the �majority�of the high-end market. Whether

the majority of the market is strategic or myopic customers depends on the relation between

� and the critical value �L;D. If � � �L;D, then the majority is myopic and the �rm should

focus on them by setting a high price; otherwise, the �rm should set a low price to induce
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strategic as well as myopic customers to buy early. The value of �L;D is investigated in

Section 2.5.

The analysis and insights obtained for medium innovation are similar to those of low

innovation. One di¤erence is that with medium innovation, the �rm can pro�tably charge

the medium price (�v� + �) for V2 to attract P1NB to buy V2 rather than V1, even when

V1 is priced low at �. Consequently, both V1 and V2 can give waiting customers a positive

surplus.

2.3.2 Single Rollover

Unlike dual rollover, leftover V1 is not in the market in period 2 under single rollover. With

low and medium innovations, the �rm cannot sell V2 to P1B. Consequently, the �rm always

targets P1NB in period 2. Without the cannibalization from V1, the �rm has an absolute

pricing power for V2 and sets p2 = �v(1 + �), leaving a surplus of zero to P1NB. Detailing

these, Proposition 2.3.3 is analogous to Proposition 2.3.1.

Proposition 2.3.3 (Low and Medium innovations) The price for V2, the stocking level

for V2, and the �rm�s pro�t in period 2 are p2 = �v(1 + �), q2 = n � s, and �S2 =

[�v(1 + �)� c](n� s) + �(q1 � s), respectively.

With p2 = �v(1 + �) in period 2, the expected waiting surplus is zero. Then the

reservation price for strategic customers in period 1 is v, the same as that for myopic

customers, and thus every high-end customer (strategic or myopic) wants to buy under

p1 = v. Therefore, we have an important result: single rollover completely eliminates the

waiting surplus with low and medium innovations.

With low innovation and dual rollover, waiting customers can derive a positive surplus

from the deeply marked-down V1. Removing the leftover V1 from the market reduces the

waiting surplus to zero.

With medium innovation and dual rollover, both the deeply marked-down V1 and the

less aggressively priced V2 can give waiting customers positive surpluses. Single rollover can



www.manaraa.com

22

still completely eliminate the waiting surplus because of its direct and indirect in�uences.

Directly, waiting customers cannot purchase the deeply marked-down V1, as it is absent.

Indirectly, without the cannibalization from V1 in period 2, the �rm can set the high

price �v(1 + �) for V2 to capture the entire surplus of the waiting customers. Thus, the

cannibalization and postponement e¤ects are not independent. A lower or no cannibalization

strengthens the �rm�s pricing power and thus leads to a higher price for the new version,

which subsequently reduces the postponement e¤ect. Proposition 2.3.4 provides the �rm�s

optimal decisions in period 1.

Proposition 2.3.4 (Low and Medium innovations) Under single rollover, there exists

a unique REE, where p�1 = v, and q
�
1 = F

�1(v�c��(�v(1+�)�c)
v��[�v(1+�)�c+�] ) if v > c+�[�v(1+ �)� c] and

q�1 = 0 otherwise.

2.3.3 Optimal Rollover Strategy

Proposition 2.3.5 (Low and Medium innovations) i) If c+�[�v(1+�)�c] � v, then

the �rm does not introduce V1, and single rollover and dual rollover give the same pro�t.

ii) If c+ �[�v(1 + �)� c] < v, then a threshold 4 � 0 exists such that

ii.a) for market-disposal spread ��� � 4, a �LM exists such that single rollover is optimal

i¤ � � �LM ;

ii.b) for market-disposal spread � � � > 4, dual rollover is optimal.

Proposition 2.3.5 i) shows that if c+ �[�v(1 + �)� c] � v, the �rm should o¤er only V2

and skip V1 (i.e., q1 = 0). Rewriting c+�[�v(1+ �)� c] � v as �[�v(1+ �)� c] � v� c, we

see that �[�v(1 + �) � c] is the discounted maximum unit pro�t by selling V2 only, while

(v � c) is the maximum unit pro�t by selling V1 only. With low and medium innovations,

the two versions are so similar that it is not pro�table for the �rm to sell both versions to

the same high-end customers, i.e., replacement is not possible. Selling one more unit of V1

to high-end customers means the number of V2 the �rm can sell will decrease by one. Thus,

to eliminate the cannibalization, as long as the innovation can compensate the �rm�s pro�t
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discounting and the customers�value depreciation over time (�[�v(1 + �)� c] � v� c), the

�rm should be patient to wait until the new technology for V2 is ready and introduce V2

directly. This result applies to a �rm that dominates the market, or has leading technologies

compared to its competitors. In contrast, in a highly competitive market, the time to market

is vital, and rival �rms may launch their own products to capture the market while another

�rm is waiting for the new technology. See Özer and Uncu (2012) for more discussion on

time to market. Proposition 2.3.5 ii) shows that if the compensation from innovation is not

enough �[�v(1 + �)� c] < v� c, the �rm should introduce V1 to avoid the loss due to time

depreciation.

Proposition 2.3.5 ii) summarizes the conditions under which single rollover can increase

the �rm�s pro�t: the market-disposal spread (���) cannot be too large, and the proportion

of the strategic customers cannot be too low. The disadvantage of single rollover is the

lower revenue from the leftover V1 in period 2, while its advantages include guaranteeing

the high price p2 = �v(1 + �) for V2 in period 2 by eliminating the cannibalization from

V1, and empowering the �rm to set the high price p1 = v for V1 in period 1 to induce

not only myopic customers but also strategic customers to buy early. When the market-

disposal spread is low, the loss from the lower revenue of the leftover V1 is small. When the

proportion of strategic customers is high, their waiting behavior has a signi�cant impact on

the �rm�s pro�t. In this case, the gain from eliminating their waiting behavior may more

than compensate for the loss from the lower revenue of the leftover V1.

2.4 High Innovation

With high innovation (� � c=�v), the incremental value gained from replacing V2 with V1

can justify the production cost c, and thus the �rm can pro�tably price V2 to target P1B.

This makes the pricing and stocking level decisions in period 2 more interesting and com-

plicated to analyze. Furthermore, when p1 = Rf , a solution satisfying the REE conditions

does not always exist as we show below.
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2.4.1 Dual Rollover

Proposition 2.4.1 The �rm�s period-2 optimal decisions are:

p1 = Rf p1 = v

every � � � �v��c
�v(1+�)�c

�v��c
�v(1+�)�c < � �

�v��c
�v�+��c � > �v��c

�v�+��c

n � Aq1 n > Aq1 n � Aq1 n > Aq1 n � Bq1 n > Bq1 n � Cq1 n > Cq1

L-L H-H L-L H-H L-L H-H L-M H-H

w(q1; Rf ; 1) = w(q1; v; 0) = w(q1; v; 0) = w(q1; v; 0) =

�vF (Aq1) �vF (Aq1) �vF (Bq1) (�v � �)F (Cq1)

where A = �v(1+�)�c
�v

; B = �
�v�[�v(1+�)���c](1��) ; C = �

�+(�v�2�)� , and L-L denotes p
0
1 = �,

p2 = �v� and q2 = n with �D2 = (�v� � c)n+ (q1 � s)�; L-M denotes p01 = �, p2 = �v� + �

and q2 = n�s with �D2 = [�v�+��c](n�s)+�(q1�s); H-H denotes p01 = �v, p2 = �v(1+�)

and q2 = n� s with �D2 = [�v(1 + �)� c](n� s).

According to Proposition 2.4.1, when p1 = v, the strategies in period 2 depend on the

proportion of strategic customers, while with p1 = Rf , the strategies hold for every �. With

high innovation, the �rm can set the price of V2 as low as �v� to induce P1B to go for

replacements. Similar to medium innovation, the positive surplus can come from either V1

or V2, but V2 is always preferred by P1NB as seen from the proof of Proposition 2.4.1.

With p1 = Rf in high innovation, the �rm�s total pro�t E[�D;l(q1; p1)] may have one

or two maximizers, which is di¤erent in low and medium innovations. In addition, a

vector of numbers (q1; p1; �;Wc; Rf ) satisfying the REE conditions does not always ex-

ist when argmaxq1 E[�
D;l(q1; p1)] has two values. In such a case, we resort to a mixed

strategy in terms of the stocking level q1. That is, the �rm stocks q�1 with probability

� and q+1 with probability (1 � �), where q�1 and q+1 are the smaller and larger maxim-

izer of E[�D;l(q1; p1)] given p1, respectively. Consequently, the waiting surplus in (2.7) is

w(q1; p1; �) = �w(q�1 ; p1; �) + (1 � �)w(q+1 ; p1; �). Except for this, there is no change in
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the REE conditions. We should note that this mixed strategy is only �partially mixed�

since the �rm only mixes two stocking levels and chooses the same p1 for both q�1 and q
+
1 .

Proposition 2.4.2 summarizes the result with p1 = Rf :

Proposition 2.4.2 With p1 = Rf , there is either a unique solution (q1; p1; �;Wc; Rf ) or

a combination of (q�1 ; p1; �;Wc; Rf ) and (q+1 ; p1; �;Wc; Rf ) satisfying the REE conditions

except for (2.11). In the latter case, q�1 = 0, and the �rm�s total pro�t is �[�v(1 + �) �

c]E(N):

In Proposition 2.4.2, q�1 = 0, so the �rm does not introduce V1 with probability �. If

p1 = Rf gives the �rm a higher pro�t compared with p1 = v and the �rm mixes two stocking

levels, we refer to p1 = Rf and the associated solution as a zero-order-mixed REE under

dual rollover. Similarly, we can de�ne a zero-order-mixed REE under single rollover which

is used in Section 2.4.2:

Surprisingly, we �nd that under high innovation, the �rm can still introduce V1 even

when c + �[�v(1 + �) � c] � v. This is di¤erent from low and medium innovation cases,

in which the �rm skips V1. With low and medium innovations, the two versions are so

similar that the �rm cannot sells both of them to the same high-end customer. With high

innovation, however, the two versions are quite di¤erent. By setting p1 = v and p2 = �v�,

the �rm can sell both to the same customer and earn a pro�t v� c+�[�v�� c]. This pro�t

may be greater than �[�v(1+ �)� c], the maximum unit pro�t by selling V2 only. So, with

the hope of selling both versions to the same high-end customers, the �rm may introduce

V1 even when �[�v(1 + �)� c] � v � c.

When we compare the high and low period-1 prices to get the optimal price, we �nd

that the result is very similar to that of Proposition 2.3.2, except that the critical threshold

� is di¤erent. Each zero-order-mixed REE is with the low price p1 = Rf and has the pro�t

�[�v(1 + �) � c]E(N). This pro�t can be achieved with p1 = v and q1 = 0, and thus it is

dominated by the pro�t associated with the high price p1 = v. Hence, the zero-order-mixed

REE does not occur under dual rollover.
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2.4.2 Single Rollover

Under single rollover in period 2, there is only V2 and two groups of customers (s P1B and

(n� s) P1NB) to consider. Bargain hunters are in the market, but they cannot a¤ord V2.

Therefore, there are only two possible values for p2 in period 2 �either �v� or �v(1 + �)

�which are the reservation prices for P1B and P1NB, respectively. Corresponding to p2 =

�v(1 + �) and p2 = �v�, there are two values of period-2 demand, which are (n � s) for

P1NB and n for high-end customers (P1B and PINB). This implies a trade-o¤ between

pricing low to sell to all high-end customers and pricing high to only sell to P1NB. The �rm

chooses p2 based on the market saturation as shown in Proposition 2.4.3.

Proposition 2.4.3 The �rm�s period-2 optimal decisions are:

p1 = Rf p1 = v

every � � � �v��c
�v(1+�)�c � > �v��c

�v(1+�)�c

n � Aq1 n > Aq1 n � Aq1 n > Aq1 all ns

L H L H H

w(q1; Rf ; 1) = �vF (Aq1) w(q1; v; 0) = �vF (Aq1) w(q1; v; 0) = 0

where A = �v(1+�)�c
�v

, and L denotes p2 = �v� and q2 = n with �S2 = (�v�� c)n+�(q1� s);

H denotes p2 = �v(1 + �) and q2 = n� s with �S2 = [�v(1 + �)� c](n� s) + �(q1 � s).

Recall that with low and medium innovation, the �rm gains an absolute pricing power for

V2 by committing to single rollover and completely eliminates strategic waiting. However,

this is not so with high innovation. Comparing Proposition 2.4.3 with Proposition 2.4.1,

when p1 = Rf or when p1 = v and � � �v��c
�v(1+�)�c , even in the absence of V1 under single

rollover, the �rm uses the same pricing strategy for V2 as that under dual rollover. Namely,

the cannibalization between these two versions is so low with high innovation that the

absence of V1 under single rollover does not strengthen the �rm�s pricing power for V2.
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Furthermore, when p1 = Rf or when p1 = v and � � �v��c
�v(1+�)�c , with the same q1, strategic

customers have the same expected waiting surpluses under both rollovers. This is di¤erent

from low and medium innovation cases, in which the �rm can reduce the waiting surplus to

zero by committing to single rollover. With medium innovation, V2 can be sold to P1NB

only, and thus eliminating the cannibalization from V1 by committing to single rollover is

equivalent to committing to the high price for V2. In contrast, with high innovation, the

�rm has the chance to induce P1B to replace V1 with V2. If the market is highly saturated,

which occurs when p1 = Rf and n � Aq1, or when p1 = v, � � �v��c
�v(1+�)�c and n � Aq1,

then it is more pro�table to set a low price to induce replacements. This leads to a positive

surplus for P1NB. In addition, under dual rollover, although the positive surplus can either

be from V2 or V1, V2 is always preferred. Therefore, despite the removal of V1 under single

rollover, waiting customers can still obtain the positive surplus from their preferred V2.

When p1 = v and � >
�v��c

�v(1+�)�c , the expected waiting surplus is zero. So, all high-end

customers want to buy in period 1 at p1 = v. This seems similar to the low and medium

innovation cases, in which single rollover can eliminate the waiting surplus completely.

However, unfortunately for the �rm, as shown in Lemma 6.1.6 in the appendix, this ideal

case (p1 = v and � = 0) cannot be attained in an REE. Thus, single rollover is not e¤ective

in reducing the waiting incentive even with a high proportion of strategic customers.

When we compare the �rm�pro�ts with high and low period-1 prices to get the optimal

p1, we �nd that unlike dual rollover, a zero-order-mixed REE with p1 = Rf may exist under

single rollover. This is because according to Lemma 6.1.6, when � > �v��c
�v(1+�)�c , the only

possible REE is with p1 = Rf . So, when � >
�v��c

�v(1+�)�c , a zero-order-mixed REE with p1 =

Rf , if any, cannot be dominated by an equilibrium with p1 = v.

2.4.3 Optimal Rollover Strategy

Finally, we compare the performance of single rollover and dual rollover with high innova-

tion. Let E[�D;h] and E[�D;l] be the �rm�s total pro�t under dual rollover with a period-1
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high price and low price, respectively. Similarly, we de�ne E[�S;h] and E[�S;l] under single

rollover. Let E[�D�] = maxfE[�D;h];E[�D;l]g and E[�S�] = maxfE[�S;h];E[�S;l]g. Con-

sequently, E[�S�] and E[�D�] are the �rm�s REE pro�ts under single and dual rollover,

respectively. Let �H = inff� : E[�S�] = E[�D�], where 0 � � < 1g.

Proposition 2.4.4 (High innovation) i) If there is an REE under single rollover, then

we have the following.

i.a) If a �H does not exist, then dual rollover is always better than single rollover.

i.b) If a �H exists, then single rollover is optimal i¤ � � �H .

ii) If there is a zero-order-mixed REE under single rollover, then dual rollover is always

better than single rollover.

According to Proposition 2.4.4 ii), the �rm never needs to implement an ordering strategy

suggested by a zero-order-mixed REE. From Section 2.4.2, single rollover does not strengthen

the �rm�s pricing power for V2. In addition, with high innovation, P1NB prefer V2 to V1.

Thus, even without V1 under single rollover, P1NB can still get their preferred option V2.

Hence, it is not clear how the absence of V1 can improve the �rm�s pro�t. Proposition 2.4.5

helps us to understand how single rollover gains an advantage over dual rollover.

Proposition 2.4.5 Suppose that there is an REE under single rollover. Then we have the

following.

i) If p�1 = v under single rollover, then dual rollover is always better than single rollover.

ii) The necessary and su¢ cient condition for the existence of a �H is that E[�S;l] � E[�D;l].

Proposition 2.4.5 i) states that single rollover cannot outperform dual rollover if a high

period-1 price is optimal, i.e., p�1 = v, under single rollover. Equivalently, p�1 = Rf under

single rollover is a necessary condition for single rollover to be optimal. Proposition 2.4.5

ii) further states that if single rollover can beat dual rollover given that the period-1 price

is low in both rollovers (E[�S;l] � E[�D;l]), then there always exists a �H such that single

rollover outperforms dual rollover for � � �H .
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Next we explain why E[�S;l] � E[�D;l] can occur. We �nd that the two pro�t functions

E[�S;l] and E[�D;l] are structurally the same except for that the leftover V1 is sold at the

price � under single rollover and at the price � under dual rollover in period 2. Since � < �,

for E[�S;l] � E[�D;l] to occur, the �rm must su¤er from a high disposal value �, which is

counterintuitive. The direct economical bene�t of a higher disposal value is a higher revenue

from the leftover V1. However, this is only part of the story. With a higher disposal value,

the �rm tends to order more V1 at the beginning of period 1. This leads to a higher expected

sale, and in turn to a more saturated market. Recall that with high innovation, replacement

becomes an option. In a saturated market, the �rm tends to set a low price for V2 to induce

P1B to purchase again. Strategic customers recognize that a higher disposal value leads to a

higher possibility of a low price for V2, so they are less willing to purchase early unless p1 is

very low. This is the indirect behavioral impact of a higher disposal value, which adversely

a¤ects the �rm�s pro�t. When the proportion of strategic customers is high, the behavioral

impact dominates the economical bene�t, and thus leads to a low pro�t. This interplay also

underscores the importance of joint pricing and stocking level consideration.

2.5 Numerical Illustration

In this section we numerically quantify the value of single rollover over dual rollover. We

also study how the innovation � and the proportion � of strategic customers a¤ect the

value of single rollover. Generalizing the notations in Section 2:4:3 for low, medium or high

innovations, we use E[�S�] and E[�D�] to denote the �rm�s respective equilibrium pro�ts

under single and dual rollover. We de�ne (E[�S�]� E[�D�])=E[�D�] as the value of single

rollover compared to dual rollover. We �rst summarize two main observations from our

analysis.

Observation 1: Single rollover is more valuable when the innovation is low or medium.

Observation 2: Single rollover is more valuable when the proportion of strategic cus-

tomers is high.



www.manaraa.com

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0. 05

0

0.05

0.1

0.15

0.2

0.25

0.3

Pro p o rt io n  o f  St rateg ic C u sto m ers

Va
lu

e 
of

 S
in

gl
e 

R
ol

lo
ve

r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0. 05

0

0.05

0.1

0.15

0.2

0.25

0.3

Pro p o rt io n  o f  St rateg ic C u sto m ers

Va
lu

e 
of

 S
in

gl
e 

R
ol

lo
ve

r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0. 04

-0. 02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Pro p o rt io n  o f  St rateg ic C u sto m ers

Va
lu

e 
of

 S
in

gl
e 

R
ol

lo
ve

r



www.manaraa.com

31

From Proposition 2.3.5, with low and medium innovations, a necessary condition for

single rollover to outperform dual rollover is that the market-disposal spread (� � �) be

less than a critical value 4. Our numerical study shows that 4 can be very large, which

implies that single rollover performs better in a wide parameter range. For example, for

� = 3, even when the �rm donates V1 with � = 0, single rollover does much better than

dual rollover (as much as 26% and 14% increase in pro�t, respectively, for � = 0:2 and

� = 0:6) as long as the proportion of strategic customers is more than 10%. In summary,

our numerical study shows that single rollover can be widely adopted in practice to increase

a �rm�s pro�t, especially when the innovation is not very high.

2.6 Conclusion

We analyze single and dual rollover strategies in low, medium and high innovation cases,

and �nd that single rollover can improve a �rm�s pro�t in all innovation cases under some

conditions. Our analytical study provides the rationale for why single rollover can outper-

form dual rollover in all three innovation cases. Both cannibalization and postponement

e¤ects are discussed while comparing the two rollover strategies. We also study the �rm�s

dynamic pricing and inventory decisions over two periods under each rollover strategy, the

joint pricing for V1 and V2, and the impact of the strategic behavior on pricing.

In our model, only one stream of high-end customers arrives in period 1 and constitutes

markets in both periods. If there is another stream of high-end customers arriving in period

2 and are interested in buying only the new version, two changes may occur. On one hand,

under dual rollover the �rm has more incentive to price the new version high to target

the customers who have not bought in period 1, which implies that single rollover is less

e¤ective. On the other hand, however, single rollover may become more important. This is

because the larger the number of high-end customers is, the more additional pro�t can be

made with single rollover by keeping the price high. The managerial insights above continue

to hold despite these two changes.
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CHAPTER 3

IMPACT OF STRATEGIC CUSTOMER BEHAVIOR AND ROLLOVER STRATEGIES

ON PRODUCT INNOVATION

3.1 Synopsis

Innovation is one of the most important processes for �rms to create new markets, transform

industries, and sustain growth. In recent times, we have seen frequent new product intro-

ductions and short product life cycles, especially in the high-tech and fashion industries. For

example, Apple introduces new iPhone versions annually and the fashion retailers usually

bring in new designs at least once per season. However, a higher innovation does not guar-

antee a higher return or a higher pro�t. As reported in Arndt and Einhorn (2010), some of

the 50 most innovative companies have very low or negative stock returns, revenue growth

and/or margin growth. Many factors such as the cost of R&D, the purchasing pattern of

customers, the degree of competitiveness in the market, the innovation pace and the way in

which a �rm rolls over from a product (version) to the next product (version), impact the

pro�tability. We use �version�and �product�interchangeably through this chapter.

When rolling over from an old product to the next, it would be ideal to have the inventory

of the old product completely depleted. However, this ideal is di¢ cult to attain in reality

with an uncertain demand, and a �rm usually needs to deal with the leftover old product

when rolling over to a new product. There are two primary product rollover strategies:

single rollover and dual rollover. With dual rollover, both the leftover old product and the

new product remain and are sold in the market. With single rollover, the leftover old product

is disposed of outside the market. Fire sales, dismantling products for spare parts, recycling

the material for future use, selling leftovers in the overseas markets, at discount stores or

through secondary channels, or donating them for charity are common ways to dispose of

32
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leftover inventory. See Tibben-Lembke (2004) for additional approaches to disposing of the

unsold inventory.

A �rm usually receives higher revenue from the leftovers under dual rollover than under

single rollover. However, dual rollover can back�re when customers behave more stra-

tegically. Aided by advanced tools, such as technical fora (e.g., Computerworld.com and

Zdnet.com) and online deal fora (e.g., DealSea.com), customers can anticipate introductions

of new products. Therefore, instead of purchasing a current product, they may wait for the

release of an upgraded new product, or for the markdown of the current product if the �rm

decides to keep its leftovers in the market. Thus, strategic customers are more willing to

delay their purchase when anticipating a possible markdown of the current product under

dual rollover. This strategic waiting behavior has greatly hurt a �rm�s pro�t in practice

(McWilliams 2004) and has received much attention lately in academia.

An interesting question is: how do the demand-side (strategic waiting behavior) e¤ect

and channel-side (product rollover strategies) e¤ect jointly impact a �rm�s optimal innov-

ation pace and pro�t? To answer this, we study a �rm�s optimal pro�t and innovation

pace decisions in four settings: when customers are myopic (i.e., they do not consider the

waiting option) under single or dual rollover, or when the customers are strategic (i.e., they

consider the waiting option) under single or dual rollover. The market demand is assumed

to be uncertain. Within each scenario, the �rm makes decisions for the innovation level,

the prices and the quantities for both the old and new products. The innovation level leads

to an R&D expenditure. Thus, in addition to demand-side and channel-side e¤ects, we also

consider the supply-side (R&D cost) e¤ect.

Our work is related to three streams of literature: product rollover strategies, product in-

novation/quality decisions over time, and strategic customer behavior in operations manage-

ment (OM). Despite their importance, product rollover strategies have not received enough

attention in academia. Billington et al. (1998) and Erhun et al. (2007) provide hands-on

experience and managerial insights. To our knowledge, there are only six papers that com-

pare di¤erent rollover strategies analytically: Levinthal and Purohit (1989), Lim and Tang
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(2006), Ferguson and Koenigsberg (2007), Arslan et al. (2009), Koca et al. (2010), and

Liang et al. (2011a). In all of these, the innovation/quality level is exogenous, so they do

not answer our primary research question of how the innovation level varies in the di¤erent

settings. In addition, most of them focus on the cannibalization between products and/or

the product introduction and phase-out times, and they do not study the strategic waiting

behavior under di¤erent rollover strategies.

Product innovation/quality decisions in the presence of strategic customers have been

studied in the marketing and economics literatures. Pricing (Kornish 2001), trade-in and

buyback (Fudenberg and Tirole 1998), planned obsolescence (Fishman and Rob 2000) are

some of the solutions to induce strategic customers to purchase early. Moorthy and Png

(1992) study whether to release products simultaneously or sequentially. Toktay et al.

(2011) consider product introduction strategies with exclusivity-seeking behavior. Krishnan

and Ramachandran (2011) study how to use a modular upgradable architecture to alleviate

consumer concerns about product obsolescence. We refer to Shane and Ulrich (2004) for a

detailed review of innovation and product development. Our study departs from this stream

of literature by studying how rollover strategies and strategic waiting behavior jointly impact

the innovation decision.

The most related papers in the OM literature are Su and Zhang (2008), Cachon and

Swinney (2009), and Lai et al. (2010), where strategic customers face the tradeo¤ between

buying the product at full price in the regular selling season and buying it at a marked-

down price in the market-clearing season with the risk of not being able to get it due to

stockout. These three papers study di¤erent mechanisms for strategic waiting mitigation

when the demand is uncertain and the inventory level is a decision variable: quantity and

price commitments in Su and Zhang (2008), quick response strategy in Cachon and Swinney

(2009), and posterior price matching in Lai et al. (2010). Our model studies how another

mechanism � single rollover � can be used to mitigate the strategic customers� waiting

incentive. Considering only one product, these three papers and others (Su and Zhang

2009, Su 2008, Cachon and Swinney 2011, Liu and van Ryzin 2008, Aviv and Pazgal 2008,
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Yin et al. 2009, Prasad et al. 2010, and Huang and Van Mieghem 2010) do not study

the product introduction and innovation decisions for the new product. While Liang et al.

(2011a) study product rollover and product introduction, their focus is on the performance

of single and dual rollover under di¤erent market compositions (based on the proportion of

strategic and myopic customers) and customer purchasing behaviors (one-time and repeat

purchase). More importantly, the innovation level is exogenous in Liang et al. (2011a).

We show analytically that the strategic waiting behavior accelerates the innovation pro-

cess �a counterintuitive �nding. Conventional wisdom is that a �rm has a lower pricing

power with strategic customers than with myopic customers, and this reduces the return

on innovation investment and in turn incentive to innovate. Dhebar (1994) supports this

conventional wisdom by showing that strategic customer behavior imposes a demand-side

constraint on the rate of product improvement. Our study, however, shows the opposite by

observing that a �rm should produce less of the old product when facing strategic customers,

and should produce even less when innovating more. This observation leads to two drivers

of our surprising result. First, a �rm producing less of the old product has more unsatis�ed

customers who can buy the new product. Thus, a �rm facing strategic customers has more

incentive to innovate in order to charge a higher price for the new product. Second, anti-

cipating the lower chance to get the leftover old product due to a lower production level,

strategic customers are more willing to buy the old product early rather than to wait for

a markdown. A �rm can increase this willingness with more innovation, which results in

an even lower production level and that allows the �rm to charge a higher price for the old

product.

Another interesting result we �nd is that when customers are myopic, single rollover

rather than dual rollover speeds up the innovation process. With both products in the

market under dual rollover, people usually think that the �rm should innovate more to

reduce cannibalization. However, our study shows the opposite. This is because with a

lower revenue from the leftovers under single rollover compared to dual rollover, the �rm

prefers to produce less to reduce the overstocking loss resulting from the demand uncertainty.
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This leads to more unsatis�ed customers and, in turn, to a higher incentive for innovation.

We also �nd that when customers are myopic, the �rm always provides a more innovative

product but earns a lower pro�t under single rollover compared to dual rollover, and the

innovation level and pro�t cannot be improved simultaneously for any selected rollover

strategy. In contrast, when customers are strategic, the �rm can provide a more innovative

product while earning a higher pro�t by adopting the appropriate rollover strategy compared

to the other rollover strategy. This underscores the importance of choosing the appropriate

rollover strategy when customers are strategic.

3.2 Model Description

To assess the impact of product rollover strategies and strategic customer behavior on a

�rm�s innovation level and pro�t, we analyze the equilibrium between the �rm and the

customers in four di¤erent settings as summarized in Table 3.1. These four settings are

discussed in Sections 3:3:1-3:3:2 and Sections 3:4:1-3:4:2:

Table 3.1. Four Settings of Customer Types and Rollover Strategies
Myopic customers under Dual Rollover Myopic customers under Single Rollover

(M-DR) (M-SR)
Strategic customers under Dual Rollover Strategic customers under Single Rollover

(S-DR) (S-SR)

Both myopic and strategic customers are high-end customers, and they arrive in period

1. High-end customers�valuations of V1 and V2 are v and v(1+ �), respectively, where � is

the additional innovation of V2 over V1. For example, � can represent the number of new

features added to V2. Strategic customers decide whether to purchase V1 in period 1 with

the waiting option in mind, while myopic customers make the decision without considering

the waiting option. Similar to Dhebar (1994) and Moorthy and Png (1992), we assume (1)

a high-end customer arriving in period 1 will remain in the market in period 2 unless he

gets one unit of V1 in period 1, and (2) there is no second-hand market.
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Another stream of high-end customers arrive in period 2. They are attracted by V2,

and thus they are interested in purchasing only V2. We can describe high-end customers

arriving in period 1 as functional-product-seeking customers, and those arriving in period

2 as innovative-product-seeking customers. For simplicity, we term high-end customers

arriving in period 2 as newcomers, and use the term high-end customers only for those

arriving in period 1. The market size for high-end customers is a random variable N > 0

with c.d.f. F (�) and density f(�), while the market size for newcomers is a random variable

K(�) > 0 with c.d.f. G�(�) and density g�(�), where K(�) increases in � stochastically. When

both the newcomers and high-end customers remaining in the market want V2 in period 2,

we assume that remaining high-end customers have purchase priority over newcomers. We

also assume that customers within each segment have equal priority. A similar assumption

is used in Su and Zhang (2008), Cachon and Swinney (2009), and Lai et al. (2010).

Besides high-end customers, there are unlimited bargain-hunters or low-end customers.

They value the product so low that they only buy it on sale. So, they arrive in period 2

and buy only the leftover V1, if any, under dual rollover when its marked-down price is not

larger than their valuation �.

Under each scenario, a pro�t-maximizing �rm may introduce a product V1 in period 1

and its upgraded version V2 in period 2. Prior to period 1, the �rm decides the innovation

level � � 0 for V2, which incurs an expenditure I(�) for R&D. The unit production cost

c is the same for both versions. This is reasonable particularly for high-tech and fashion

products. For example, �iPad 2�s 32-gigabyte model with a GSM/HSPA air standard carries

a bill of materials totaling $326.60, while the 32-gigabyte version equipped with a CDMA

air standard has a materials bill of $323.25, according to IHS iSuppli. That compares with

a $320 bill of materials for the �rst-generation 32-gigabyte iPad...�(Becker 2011). In both

periods, the �rm decides the prices and production levels of V1 and V2 as detailed below.

Under single rollover, the �rm receives the disposal value � � 0 from each unit of the leftover

V1. We assume �; � < c, to avoid producing an in�nite amount. Note that the �rm will not

charge a price lower than � for the leftovers. We also assume � < � as the disposal value of
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the leftover V1 under single rollover is usually lower than its selling price in the market. We

refer to (���) as the market-disposal spread. The inventory remaining at the end of period

2 has zero value. The �rm discounts its pro�t in period 2 by a factor of �; 0 < � < 1. The

�rm knows v, �, �, c, F (�) and G�(�), and observes the realized high-end market size at the

end of period 1. Customers observe the prices but not the production levels.

Below is a summary of the event sequence in each of the four settings:

1. The �rm decides the innovation level � at a cost of I(�).

2. Period 1 begins. The �rm decides the price p1 and the production level q1 for V1,

and high-end customers (strategic or myopic customers) decide whether to buy or not. The

high-end market size N is realized at the end of period 1.

3. Period 2 begins. Under dual rollover, the �rm decides the price p2, the production

level q2 for V2, and the marked-down price p01 for the leftover V1, if any. Under single

rollover, it decides p2 and q2 for V2, and receives � for each unit of the leftover V1, if any.

High-end customers who have not purchased V1, newcomers and all low-end customers make

purchase decisions. Any leftovers at the end of period 2 have zero value.

We assume the following reasonable properties for the innovation cost I(�): I(0) = 0,

I 0(�) > 0 and I 00(�) > 0. Let �max =
(1��)(v�c)

�v
. We will show later (in Sections 3:3:1, 3:3:2;

3:4:1 and 3:4:2) that in the case with � � �max, the �rm skips V1 (q1 = 0) and introduces

only V2, and thus there is no di¤erence between single and dual rollovers, or between myopic

and strategic customers. In this chapter, �higher (resp., lower)�means �not lower (resp.,

not higher)�, and �more (resp., less)�means �not less (not more)�.

3.3 Myopic Customers

3.3.1 Dual Rollover (M-DR)

In period 1, the �rm decides p1 and q1 targeting myopic customers, the only segment in

the market, which means the expected sale in period 1 is EN [minfN; q1g]. Two possibilities

occur after the high-end market size N is realized at the end of period 1.
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(1) If q1 > N , then all myopic customers are satis�ed and there are q1 �N units of V1

left. Thus in period 2, the �rm will set p2 = v(1 + �) and sell V2 to the newcomers, and it

will set p01 = � to clear the leftover V1.

(2) If q1 < N , then there are no leftover V1 and there are N � q1 myopic customers

still in the market; in period 2, the �rm will set p2 = v(1 + �) and sell V2 to the remaining

myopic customers and the newcomers.

Let (x)+ denote max(x; 0). Combining (1) and (2), the �rm�s period-2 optimal pro�t is

�2(q1; �) = ENfmax
q2
[v(1+ �)EK(�)[min f(N � q1)++K(�); q2g]� cq2]+ �(q1�N)+g: (3.1)

Clearly, in period 2, the �rm faces a newsvendor problem with demand (N � q1)+ +K(�),

ordering cost c and selling price v(1 + �). Because N is realized before period 2 starts,

the �rm will produce q2 = (N � q1)+ +G�1� (
v(1+�)�c
v(1+�)

) to sell V2 to every remaining myopic

customer and some of the newcomers (following the newsvendor critical fractile). After

substituting q2 into (3.1) and reorganizing terms, we have

�2(q1; �) = H(�) + [v(1 + �)� c]EN [N � q1]++�EN [q1 �N ]+,

where H(�) = v(1 + �)EK(�)[min fK(�); G�1� (
v(1+�)�c
v(1+�)

)g] � cG�1� (
v(1+�)�c
v(1+�)

). Notice that

H(�) is the optimal pro�t of the newsvendor problem selling to newcomers maxx v(1 +

�)EK(�)[min fK(�); xg] � cx. Because v(1 + �) increases in � and K(�) increases in �

stochastically, we know that H(�) increases in �. That is, with a higher �, the �rm can

cater to more newcomers and charge a higher price to each, and thus it earns a higher pro�t

from newcomers. The second and third term in �2(q1; �) represent the expected pro�t from

selling V2 to the unsatis�ed myopic customers and the expected revenue from selling the

leftover V1 to the low-end customers, respectively. The analysis in period 2 is similar for

all four settings in Table 1.

Without the waiting option in mind, myopic customers buy V1 in period 1 if p1 � v. So
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for any given �, the �rm sets p1 = v and determines the optimal q1 to maximize its expected

two-period pro�t as

�M-DR(q1; �) = vEN [ minfN; q1g]� cq1 + ��2(q1; �)

= fv � �[v(1 + �)� c]� ��gEN [ minfN; q1g]

� (c� ��)q1 + �H(�) + �[v(1 + �)� c]EN [N ],

where the superscript M-DR means the setting when the high-end customers are myopic

and the dual rollover is adopted. Notice that the last two terms are independent of q1. For

a given � < �max (i.e., v > c + �[v(1 + �) � c]), the optimal order quantity can be found

from the newsvendor critical fractile as

qM-DR1 (�) = F�1(
v � c� �[v(1 + �)� c]
v � �[v(1 + �)� c]� �� ); (3.2)

for � � �max, qM-DR1 (�) = 0. That is, when the discounted product margin of selling V2

dominates that of selling V1 (i.e., v � c � �[v(1 + �) � c] or � � �max), the �rm prefers to

keep the market for V2 by skipping V1.

Let �M-DR and �M-DR(�) denote the �rm�s optimal total expected pro�t and the �rm�s

total expected pro�t function when selling to myopic customers under dual rollover, respect-

ively. Similar naming conventions are used later. Then, the optimal innovation level �M-DR

can be found by maximizing the pro�t:

�M-DR = max
��0

�M-DR(�) = max
��0

[�M-DR(qM-DR1 (�); �)� I(�)]. (3.3)

Notice that qM-DR1 (�) either solves @�
M-DR (q1;�)
@q1

= 0 or is a constant zero. We have

d�M-DR(�)

d�
=
@�M-DR(qM-DR1 (�); �)

@�
� dI(�)

d�

= �vEN [N � qM-DR1 (�)]+ + �H 0(�)� I 0(�): (3.4)
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Clearly, a higher � impacts �M-DR(�) favorably by increasing the price that can be charged

for V2 and attracting more newcomers, and adversely by incurring a higher R&D expendit-

ure. Lemma 3.3.1 characterizes the optimal innovation level �M-DR.

Lemma 3.3.1 (M-DR) The optimal innovation level �M-DR is either zero or it satis�es

�vEN [N � qM-DR1 (�)]+ + �H 0(�) � I 0(�) = 0, and the optimal order quantity is either zero

or given by (3.2).

3.3.2 Single Rollover (M-SR)

The analysis for single rollover is the same as that for dual rollover except in period 2, when

q1 > N , instead of selling the leftover V1 at p01 = � in the market, the �rm disposes of all

leftover V1 outside of the market and receives � for each unit.

Lemma 3.3.1 does not establish the unimodal property of �M-DR(�) or the uniqueness

of the solution for d�M-DR (�)
d�

= 0, which turns out to greatly depend on the properties of

I(�). Without the unimodal property or uniqueness, however, we can still compare the

optimal innovation level �M-SR and the �rm�s optimal total expected pro�t �M-SR under

single rollover with those under dual rollover as summarized in Proposition 3.3.2.

Proposition 3.3.2 (M-SR vs. M-DR) When high-end customers are myopic, the �rm

earns a higher pro�t but provides a less innovative V2 under dual rollover compared to single

rollover. That is, �M-DR � �M-SR and �M-DR � �M-SR.

Proof. We can see that

�M-DR = �M-DR(qM-DR1 (�M-DR); �M-DR)� I(�M-DR)

� �M-DR(qM-SR1 (�M-SR); �M-SR)� I(�M-SR)

� �M-SR(qM-SR1 (�M-SR); �M-SR)� I(�M-SR)

= �M-SR;
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where the �rst inequality is from the fact that �M-DR(�) is maximized at � = �M-DR and the

second inequality is due to

�M-SR(q1; �) = vEN [ minfN; q1g]�cq1+�fH(�)+[v(1+�)�c]EN [N�q1]++�EN [q1�N ]+g

and � < �.

Next we prove �M-DR � �M-SR. Let �M-SR(�) = �M-SR(qM-SR1 (�); �) � I(�). Similar to

(3.4), we have
d�M-SR(�)

d�
= �vEN [N � qM-SR1 (�)]+ + �H 0(�)� I 0(�): (3.5)

Since

qM-DR1 (�) = F�1(
v � c� �[v(1 + �)� c]
v � �[v(1 + �)� c]� �� ) > F

�1(
v � c� �[v(1 + �)� c]
v � �[v(1 + �)� c]� �� ) = q

M-SR
1 (�)

for � < �max and qM-DR1 (�) = qM-SR1 (�) = 0 for � � �max, we have qM-DR1 (�) � qM-SR1 (�). This

inequality together with (3.4) and (3.5) imply d�M-DR (�)
d�

� d�M-SR (�)
d�

for any �. Note for any

� � �M-SR,
�Z

�M-SR

d�M-DR(�)

d�
d� �

�Z
�M-SR

d�M-SR(�)

d�
d�

=) �M-DR(�)� �M-DR(�M-SR) � �M-SR(�)� �M-SR(�M-SR)

=) �M-DR(�) + �M-SR(�M-SR)� �M-SR(�) � �M-DR(�M-SR)

=) �M-DR(�) � �M-DR(�M-SR) because �M-SR(�M-SR)� �M-SR(�) � 0:

Hence, we have �M-DR(�) � �M-DR(�M-SR) for any � � �M-SR, and thus �M-DR � �M-SR.

Proposition 3.3.2 shows that when customers are myopic, although single rollover when

compared to dual rollover, reduces a �rm�s pro�t due to the low disposal value for the

leftover V1, it accelerates the innovation process. This is because, with a low disposal

value under single rollover, the �rm tends to produce less V1 to reduce possible losses from
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overstocking (that is, qM-SR1 (�) � qM-DR1 (�) as shown in the proof of Proposition 3.3.2), and

this leads to lower sales on average in period 1 and then a less saturated market for V2 (i.e.,

more high-end customers remain in the market). Anticipating more high-end customers

remaining in the market, the �rm has more incentive to invest in R&D in order to charge

a higher price for V2. Another way to understand Proposition 3.3.2 is that, when the �rm

sells the leftover V1 in the market under dual rollover rather than disposes of it outside

of the market under single rollover, it expects more revenues from V1 and thus has less

motivation to innovate. This is an interesting result since with both products in the market

under dual rollover, people usually think that the �rm should innovate more in order to

better di¤erentiate them.

3.4 Strategic Customers

3.4.1 Dual Rollover (S-DR)

Strategic customers are forward-looking and consider the option of buying in period 2 when

deciding to purchase or not in period 1. Given an innovation level �, we adopt the rational

expectation concept to model the interaction between the �rm and strategic customers. We

assume that all strategic customers are homogenous and each of them holds a belief of the

waiting surplus Wc �the surplus that every strategic customer can get by waiting. The �rm

holds a belief Rf of the strategic customers�reservation price for V1 in period 1. Wc and

Rf are privately formed by each strategic customer and the �rm, respectively, and thus are

not revealed to the others.

The �rm should set p1 = Rf and q1(p1; �) = argmaxq1 �
S-DR(p1; q1; �) in order to max-

imize its expected two-period pro�t �S-DR(p1; q1; �) for a given �. Strategic customers buy

V1 in period 1 only when the surplus of buying now is at least the waiting surplus, i.e.,

v � p1 � Wc, which means that their reservation price for V1 in period 1 is v �Wc.

In a rational expectation equilibrium, beliefs should be consistent with their outcomes.

Therefore, the �rm�s belief of the strategic customers�reservation price for V1 should be
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equal to the reservation price from the strategic customers�point of view (i.e., Rf = v�Wc),

and thus all strategic customers want to buy V1 in period 1. Next, we calculate the actual

waiting surplus for an individual strategic customer if he decides to wait rather than buy in

period 1. Wc should be consistent with the actual waiting surplus. As analyzed in Section

3:3:1, if q1 < N , then there is no V1 left in period 2 and the �rm sets p2 = v(1 + �), which

implies a zero surplus from waiting. A positive waiting surplus can occur only if q1 > N , in

which case the �rm sets p01 = � < v to clear the leftover V1. Since bargain hunters want to

buy the leftover V1 at the low price of �, the individual waiting strategic customer cannot

necessarily get one unit of the leftover V1 and obtain the surplus v� � when q1 > N . In

our model, we follow the e¢ cient rationing assumption as in Su and Zhang (2008), Cachon

and Swinney (2009) and Lai et al. (2010): strategic customers have purchase priority over

bargain hunters. With this assumption, the waiting customer can certainly get one unit of

the leftover V1 in period 2 when q1 > N . Therefore, the actual waiting surplus is (v��)F (q1)

as implied from the above discussion. Clearly, the actual waiting surplus increases in q1.

We here summarize the rational expectation equilibrium conditions between the �rm

and strategic customers for a given �: (i) p1 = Rf , (ii) q1(p1; �) = argmaxq1 �
S-DR(q1; p1; �),

(iii) Rf = v �Wc and (iv) Wc = (v � �)F (q1). Lemma 3.4.1 characterizes the equilibrium.

Lemma 3.4.1 (S-DR) i) For any given innovation level �, there is a unique rational ex-

pectation equilibrium between the �rm and strategic customers.

ii) With � < �max, ii.a) the price pS-DR1 (�) > c + �[v(1 + �) � c] and the order quant-

ity qS-DR1 (�) > 0, and they can be uniquely determined from the two equations: p1 =

v � (v � �)F (q1) and F (q1) = p1�c��[v(1+�)�c]
p1��[v(1+�)�c]��� , and ii.b) q

S-DR
1 (�) decreases while pS-DR1 (�)

increases in �.

iii) With � � �max, qS-DR1 (�) = 0 and pS-DR1 (�) = v.

Proof. The proofs of i) and ii.a) are similar to those of Lemma 2 in Liang et al. (2011a),

and details are in Chapter 6. When qS�DR1 (�) = 0, the value of pS�DR1 (�) is of no consequence

in practice. But theoretically, we need pS�DR1 (�) = v to satisfy REE conditions.



www.manaraa.com

45

In Lemma 3.4.1 ii), it is interesting to see how qS-DR1 (�) and pS-DR1 (�) change as � increases.

With a higher � and then a higher chargeable price for V2, the �rm prefers to limit the

sale of V1. So, it reduces the production level qS-DR1 (�) to keep the market for V2. The

lower production level of V1, in turn, increases the chance of a stockout and thus reduces

the probability of getting the leftover V1 by waiting. Anticipating the lower likelihood of

getting the leftover V1 by waiting, strategic customers are willing to pay more for V1 in

period 1. Therefore, a higher � can increase not only the price for V2 but also the price for

V1 in period 1.

Similar to (3.3), the optimal innovation level �S-DR can be found by maximizing the

pro�t:

�S-DR = max
��0

�S-DR(�) = max
��0

[�S-DR(qS-DR1 (�); pS-DR1 (�); �)� I(�)];

where

�S-DR(q1; p1; �) = p1EN [ minfN; q1g]�cq1+�fH(�)+[v(1+�)�c]EN [N�q1]++�EN [q1�N ]+g:

(3.6)

Note that

d�S-DR(�)

d�

=
@�S-DR(qS-DR1 (�); p1; �)

@p1

����
p1=pS-DR1 (�)

� dp
S-DR
1 (�)

d�| {z }
Indirect Positive Behavioral Impact

+
@�S-DR(qS-DR1 (�); pS-DR1 (�); �)

@�| {z }
Direct Positive Economic Impact

�dI(�)
d�

= EN [ minfN; qS-DR1 (�)g] � dp
S-DR
1 (�)

d�
+ �vEN [N � qS-DR1 (�)]+ + �H 0(�)� I 0(�): (3.7)

Comparing (3.4) and (3.7), we can see that the direct economic bene�t of a higher innovation

level exists with either myopic or strategic customers, and the direct impact is via both a

higher chargeable price for V2 and more newcomers. When selling to strategic customers,

however, in addition to the direct positive economic impact, there is an indirect impact on

the strategic customers�waiting incentive and thus on the price pS-DR1 (�) of V1 in period 1,
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as in the discussion for Lemma 3.4.1. Because dpS-DR1 (�)

d�
� 0 from Lemma 3.4.1, the indirect

behavioral impact favors the �rm�s pro�t. Although we do not have a closed-form expression

for �S-DR or �S-DR, we can compare them with �M-DR and �M-DR as in Proposition 3.4.2.

Proposition 3.4.2 (M-DR vs. S-DR) Under dual rollover, the �rm earns a higher pro�t

but provides a less innovative V2 when selling to myopic customers than when selling to

strategic customers. That is, �M-DR � �S-DR and �M-DR � �S-DR.

Proof. We can see that

�M-DR = �M-DR(qM-DR1 (�M-DR); �M-DR)� I(�M-DR)

� �M-DR(qS-DR1 (�S-DR); �S-DR)� I(�S-DR)

� �S-DR(qS-DR1 (�S-DR); pS-DR1 (�S-DR); �S-DR)� I(�S-DR)

= �S-DR:

The last inequality is from �M-DR(qS-DR1 (�S-DR); �S-DR) � �S-DR(qS-DR1 (�S-DR); pS-DR1 (�S-DR); �S-DR),

which is due to pS-DR1 (�S-DR) � v.

Next we prove �M-DR � �S-DR. For � < �max,

qS-DR1 (�) = F�1(
pS-DR1 (�)� c� �[v(1 + �)� c]
pS-DR1 (�)� �[v(1 + �)� c]� �� ) < F

�1(
v � c� �[v(1 + �)� c]
v � �[v(1 + �)� c]� �� ) = q

M-DR
1 (�)

due to pS-DR1 (�) < v; for � � �max, we have qS-DR1 (�) = qM-DR1 (�) = 0: Therefore, qS-DR1 (�) �

qM-DR1 (�) for any �. Note that

d�M-DR(�)

d�
= �vEN [N � qM-DR1 (�)]+ + �H 0(�)� I 0(�)

� EN [ minfN; qS-DR1 (�)g] � dp
S-DR
1 (�)

d�
+ �vEN [N � qS-DR1 (�)]+ + �H 0(�)� I 0(�)

=
d�S-DR(�)

d�
;

where the inequality is due to dpS-DR1 (�)

d�
� 0 from Lemma 3.4.1 and qS-DR1 (�) � qM-DR1 (�).
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With d�M-DR (�)
d�

� d�S-DR (�)
d�

, we can prove the result in a way similar to that in Proposition

3.3.2.

Proposition 3.4.2 states that strategic behavior hurts the �rm�s pro�t, but speeds up

the innovation process which is counter to intuition. Because it is di¢ cult to extract all

of the utility from strategic customers, the return on innovation investment when selling

to strategic customers is lower compared to selling to myopic customers. Therefore, people

usually think that a �rm has less incentive to innovate when customers are strategic. Our

model, however, shows the opposite. There are two reasons for this counterintuitive result.

First, the �rm produces less V1 to reduce the strategic customers�waiting incentive, that

is, qS-DR1 (�) � qM-DR1 (�) as shown in the proof of Proposition 3.4.2. This on average leads to

more unsatis�ed high-end customers from period 1. Knowing that there are more customers

who can buy V2, the �rm has more incentive to innovate. Second, when selling to strategic

customers, a higher innovation in V2 not only increases the price for V2, but also implies a

higher chargeable price for V1 in period 1 as the indirect positive behavioral impact shown

in (3.7). There is a chain-e¤ect here: the innovation level of V2 a¤ects the inventory level

of V1, which in turn a¤ects the price of V1. The key part is the interdependence between

the inventory level and the price of V1, which is absent when selling to myopic customers.

Because of this interdependence, a higher innovation level can mitigate the waiting behavior.

3.4.2 Single Rollover (S-SR)

The analysis in period 2 is the same as that in Section 3:3:2. If q1 < N , then there is no V1

left and the �rm sets p2 = v(1 + �), which implies a zero surplus from waiting. If q1 > N ,

then there are leftover V1 and the �rm sell V2 at p2 = v(1 + �) to newcomers. However,

di¤erent from dual rollover, when q1 > N , the �rm under single rollover will dispose of

the leftover V1 outside of the market, which implies again a zero surplus from waiting.

Therefore, under single rollover, the waiting surplus is zero for strategic customers. This

means that strategic customers buy V1 in period 1 when p1 = v, the same price charged
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to myopic customers. Here, we reach the result comparing the �rm�s pro�t and innovation

investment under single rollover when selling to di¤erent customers.

Proposition 3.4.3 (M-SR vs. S-SR) Under single rollover, strategic customers behave

myopically. In addition, under single rollover, the �rm earns the same pro�t and innovates

at the same level regardless of whether customers are myopic or strategic. That is, �M-SR =

�S-SR and �M-SR = �S-SR.

Therefore, by adopting single rollover, the �rm can completely eliminate strategic wait-

ing. However, eliminating strategic waiting does not guarantee a higher pro�t. This is

because the �rm su¤ers from the low disposal value of the leftover V1 under single rollover

as implied in Lemma 3.4.4.

Lemma 3.4.4 (S-SR) The �rm�s optimal total expected pro�t �S-SR increases in � while

the optimal innovation level �S-SR decreases in �.

Proof. We can prove Lemma 3.4.4 in a similar way to that in Proposition 3.3.2 by

considering � = �1, � = �2, and �1 > �2.

Proposition 3.4.5 i) below shows that single rollover can outperform dual rollover only

when the market-disposal spread (� � �) is not large.

Proposition 3.4.5 (S-SR vs. S-DR) i) There exists a threshold 4� � 0 such that when

the market-disposal spread � � � � 4�, then �S-SR � �S-DR; otherwise, �S-SR < �S-DR.

ii) There exists a threshold 4� � 0 such that when the market-disposal spread � � � � 4�,

then �S-SR � �S-DR; otherwise, �S-SR > �S-DR.

Proof. When � = �, we have �S-SR = �M-SR = �M-DR � �S-DR, where the �rst equality

is from Proposition 3.4.3, the second equality is from the fact that with myopic customers,

the only di¤erence between single and dual rollover lies in � vs. �, and the last inequality

is from Proposition 3.4.2. Because �S-SR increases in � according to Lemma 3.4.4, if we
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decrease � by starting with � = �, then there exists a threshold 4� � 0 such that when

� � � � 4�, we have �S-SR � �S-DR; otherwise, �S-SR < �S-DR. This completes the proof

of i).

Similarly, when � = �, then �S-SR = �M-SR = �M-DR � �S-DR. Because �S-SR decreases in

� according to Lemma 3.4.4, if we decrease � by starting with � = �, then there exists a

threshold 4� � 0 such that when � � � � 4�, we have �
S-SR � �S-DR; otherwise, �S-SR >

�S-DR.

Comparing Propositions 3.3.2 and 3.4.5, when customers are myopic, the �rm always

gets a lower pro�t but invests more in innovation under single rollover, when compared to

dual rollover. However, this is not true with strategic customers, in which case, depending on

the value of the market-disposal spread, the �rm can earn either a higher or a lower pro�t

and invest either more or less in innovation under single rollover. This is because when

customers are myopic, compared to dual rollover, a low disposal value under single rollover

hurts the pro�t but helps the innovation level. When customers are strategic, however,

besides the disposal value, another element �the waiting behavior �in�uences the results.

The waiting behavior lowers the pro�t since the �rm cannot extract all of the customers�

utility, and thus has to reduce the price to induce early purchasing, but the waiting behavior

speeds up the innovation process; see our discussion following Proposition 3.4.2.

Therefore, regarding the pro�t, a �rm adopting single rollover su¤ers from the low dis-

posal value of V1, but bene�ts from the eliminated waiting behavior. When the disposal

value of V1 under single rollover is not relatively low (i.e., ��� � 4�), the waiting behavior

e¤ect on the �rm�s pro�t dominates the low disposal value e¤ect, which leads to a higher

pro�t than that under dual rollover (i.e., �S-SR � �S-DR). In terms of the innovation level,

under single rollover, the low disposal value of V1 forces the �rm to innovate faster, but the

eliminated waiting incentive retards the innovation. When the disposal value of V1 under

single rollover is not low enough (i.e., � � � � 4�), the waiting behavior e¤ect dominates

and thus leads to a lower innovation level (i.e., �S-SR � �S-DR).
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According to Proposition 3.3.2, when selling to myopic customers, it is not possible for

the �rm to invest more in innovation and at the same time earn a higher pro�t, regardless of

the rollover strategy adopted. A natural question that arises is whether the same is possible

when customers are strategic. The answer is yes, as shown in Proposition 3.4.6.

Proposition 3.4.6 i) If 4� > 4�, then �S-SR > �S-DR and �
S-SR > �S-DR for 4� < ��� <

4�.

ii) If 4� < 4�, then �S-DR > �S-SR and �
S-DR > �S-DR for 4� < � � � < 4�.

Proof. The proof uses the results of Proposition 3.4.5 in two separate cases: 4� > 4�

and 4� < 4�.

Proposition 3.4.6 states that when selling to strategic customers, with a moderate

market-disposal spread (minf4�;4�g < � � � < maxf4�;4�g), the �rm provides a more

innovative product in order to earn a higher pro�t under the appropriate rollover strategy

(either single rollover or dual rollover, depending on the relation between 4� and 4�)

compared to the other rollover strategy. It underscores the importance of adopting the

appropriate rollover strategy when selling to strategic customers.

3.5 Conclusion

We investigate how di¤erent rollover strategies and strategic waiting behavior impact a �rm�s

innovation level and pro�t in four settings. We show that when customers are myopic, single

rollover hurts the �rm�s pro�t, but surprisingly, increases the innovation level. The presence

of strategic customers reduces the �rm�s pro�t but forces the �rm to innovate faster, which

is counterintuitive. We also show that when customers are strategic, the innovation level

and the pro�t can both be improved by selecting a proper rollover strategy, whereas this is

not the case when customers are myopic. In addition, when selling to strategic customers,

the �rm can use single rollover to eliminate strategic customers�waiting behavior completely

while extracting all of their utility.
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We study a two-period model in order to get analytical results and clear insights, and

thus do not consider the option of delaying the introduction of the new product. Delay-

ing introduction of the new product can mitigate strategic waiting behavior by increasing

customers�future utility discount and increasing the stockout risk of the current product.

Thus, with this option, a �rm has more incentives to adopt dual rollover rather than single

rollover. However, postponing product introduction can hurt the �rm when the future util-

ity discount is too high. Because a �rm can compensate the future discount by providing

a more innovative new product, it may need to consider the tradeo¤ between the timing of

product introduction and the cost of R&D. For detailed studies of product introduction and

phase-out timing, see Lim and Tang (2006), Arslan et al. (2009), and Koca et al. (2010).
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SITE-TO-STORE OR STORE-TO-SITE? APPLICATION OF ONE-WAY

TRANSSHIPMENT IN DUAL-CHANNEL RETAILING

4.1 Synopsis

For many retailers, �the question of whether or not to adopt a multi-channel retailing

strategy has already been answered: multi-channel retailing is a business imperative.�(Re-

portlinker 2010). In a few short years, the dramatic development of shopping through the

Internet has seen many traditional �brick-and-mortar� retailers, such as Walmart, J.C.

Penney, Target and Macy�s launching new virtual online channels, and thus becoming

�brick-and-click�retailers. Over time, some pure internet retailers such as iParty.com have

expanded their businesses by opening physical stores (Agatz et al. 2008). As a result,

multi-channel presence is now a dominant strategy for retailers, and learning how to integ-

rate channels e¤ectively is key to their success. A report for top UK e-retail strategies ranks

�multi-channel integration�as the top priority for e-retailing success (IMRG 2006).

With orders from multiple channels, �Every retailer will need to have the capability of

taking orders from anywhere and ful�lling from anywhere, if not now, then at some point

down the road.�(Internet Retailer 2009). In order to achieve the goal of �Buy Anywhere,

Ful�ll Anywhere�, sharing inventory across channels is important. In fact, without invent-

ory sharing across channels, most of the cross-channel activities cannot be done (Bengier

2010). Many retailers who initially separated inventory for their physical and online stores,

are now looking at pooled inventory. �It [Pooled inventory] allows greater inventory con-

trol, cross-channel ordering....�(Faithful 2010). �When retailers combine cross-channel order

management with the ability to ful�ll orders from any channel, including stores and ware-

houses dedicated for either stores or web sales, they can better match customer demand with

52
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available inventory.� (Internet Retailer 2009). For example, endless aisles, one of the key

strategies leading to a successful multi-channel retailing, can e¤ectively capture lost sales

caused by the unavailable items in the store by enabling customers to access the inventory

across the whole retail chain (Kramer 2008).

However, channel integration is not easy due to the di¤erent demand drivers, optimal

inventory con�gurations, cost structures, product varieties, delivery mechanisms, and so on

(Metters and Walton 2007). One of the three key reasons why some retailers shun the multi-

channel strategy is the operational di¢ culty of integration (Zhang et al. 2010). A study,

based on a survey of 225 companies in the consumer product distribution industry, argues

that the biggest operational challenge facing multi-channel retailers is lack of integration

between inventory and order management systems (Business Wire 2004). Therefore, it is

important to study how a multi-channel retailer can e¤ectively integrate di¤erent channels.

From a supply chain�s perspective, integrating traditional and online channels is at-

tractive due to cost savings in holding inventory, improved customer service resulting from

reduction in lost sales, risk pooling through inventory sharing, and potential economies

of scale. In practice, di¤erent strategies have been pursued by di¤erent organizations to

integrate the two channels.

One channel integration strategy is the store-to-site strategy. With this strategy, a

retailer integrates the two channels by transparently making in-store inventory available to

online orders when the online warehouse is out of stock. According to Rupp (2009), this

strategy is adopted by such retailers as Orvis Company Inc., Systemax Inc.�s CompUSA,

and Jones Apparel Group (the holding company for popular apparel and footwear brands

including Jones New York and Nine West). Some retailers such as Tesco, Gap, and Fnac

(the largest retailer of books, music, and software in France) follow a variant of the store-

to-site strategy to integrate the two channels. These �rms use inventories in their existing

retail stores rather than build warehouses to ful�ll their online demands (Seifert et al. 2006).

Another channel integration strategy is the site-to-store strategy. With this strategy, a
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retailer keeps a central warehouse for his online demand. In addition, a customer, who is not

able to �nd the desired product in a local retail store, has the choice to order the product

from the retailer�s web site through an in-store online shopping system, and then pick it

up from the local store or have it delivered directly to home. The in-store online shopping

system can be a kiosk or even a salesperson�s handheld device (Kramer 2008). For example,

both Adidas and Walmart have kiosks or computer terminals installed in some of their retail

stores, through which customers can order out-of-stock items. The department store chain

Kohl�s plans to deploy self-service kiosks in all of its stores in late 2010 after a successful

pilot test in 2009, and expects these kiosks to be another major driver of its market share

(Gokis 2010). Dell uses a variant of the site-to-store strategy for multi-channel retailing.

Instead of stocking inventory in retail stores, Dell places sample products for computers and

printers in selected retail stores so that customers can experience the products and then

order them through in-store kiosks (WSJ 2003).

Besides the site-to-store and store-to-site strategies, other approaches exist to integrate

the two channels. According to a survey of 55 dual-channel retailers, when online demand is

very small, some retailers use existing distribution centers, which supply physical stores, to

ful�ll online orders (de Koster 2003). Unfortunately, di¤erent �rms seem to be experimenting

with di¤erent integrating approaches without knowing which method works best for them

(Bendoly et al. 2007).

In this chapter, we take a �rst step to study two standard integration strategies: site-to-

store and store-to-site. In particular, we answer the following questions: (i) How should a

retailer integrate his two channels �site-to-store or store-to-site? (ii) When does a channel

integration strategy matter? To answer the two questions, we model a dual-channel retailing

system as a newsvendor network (Van Mieghem and Rudi 2002). The newsvendor network

consists of a channel with a single store and another channel with multiple stores. In our

analysis, we shall refer to the former as an online channel and the latter a physical channel,

rather than call them channel one and channel two. The terminology notwithstanding, our

analysis applies to retail systems with two independent channels.
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We �rst consider the case in which the physical channel consists of one retail store. We

demonstrate that if inventory can be stored in only one channel, then it should be stored

in the channel with stochastically larger or less uncertain demand (in the concave order).

We then study the channel integration strategy for the case in which inventory can be kept

in both channels by assuming demands to follow three-point distributions. It turns out

that the optimal channel integration strategy (�the optimal strategy�for short, hereafter)

depends on the product contribution margin and the channel demand distribution shape.

In particular, for high-margin products, the �rm should use the excess inventory from the

channel with low (resp., high) demand variability to satisfy the extra demand in the channel

with high (resp., low) demand variability when the probability for the middle value is high

(resp., low). For low-margin products, the transshipment direction should be the opposite.

We then use numerical experiments to study the channel integration problem for normal

and gamma demand distributions. Our experiments show that the insights developed with

three-point demand distributions continue to hold for normal and gamma distributions.

Furthermore, the optimal strategy makes a signi�cant di¤erence on the �rm�s pro�t when

the margin is very high or very low, when the transshipment cost is high, when the demand

correlation between the two channels is not strongly positive, or when the di¤erence between

the demand uncertainties of the two channels is large.

Next, we study the case in which there are multiple retail stores in the physical channel.

Based on our results with three-point distributions, we develop a simple rule to identify an

e¤ective integration strategy for the multiple-retail-store case with normal demands. With

this rule, one only needs to compare the demand standard deviation of the online channel

with the sum of the demand standard deviations of all the retail stores. Our computational

experiments show that this simple heuristic identi�es the optimal strategy in 169 out of 180

problem instances. Moreover, we �nd that the number of retail stores a¤ects the integration

strategy signi�cantly. In particular, when the number of retail stores is large, a �rm should

choose a site-to-store (resp., store-to-site) strategy when the product contribution margin

is high (resp., low).
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Finally, we build a circular spatial model for dual-channel retailing systems. The circular

model captures the main factors that drive customer purchasing behavior, such as the trav-

elling distance to a retail store and the inconvenience of shopping online. We demonstrate

how our results can be applied to this circular model and develop insights on how customer

purchasing behavior drivers impact a retailer�s channel integration strategy.

To characterize the optimal strategy, we need to compare the optimal solutions of two

one-way transshipment problems, which turns out to be quite a challenge for demands

with general distributions. One might think that the novel approach used by Lu and Van

Mieghem (2009) may be applied to our problem. However, in their model, transshipment

is used in anticipation of future mismatch between supply and demand. Consequently, it

is possible that one-way or no transshipment can be the optimal strategy in Lu and Van

Mieghem (2009) under certain conditions. On the other hand, in our model, transshipment

is used as a recourse action after the mismatch happens. Therefore, transshipment always

bene�ts the �rm whenever the mismatch occurs as long as the transshipment cost is reas-

onably small. As a result, the approach of Lu and Van Mieghem (2009) cannot be applied

directly to our problem. Therefore, we assume that demands follow three-point distributions

to develop analytical results.

The three-point distribution for demand has not been assumed in the supply chain

literature; however, two-point distributions, the special cases of three-point distributions,

have been widely considered (Desai et al. 2007, Padmanabhan and Png 1997, Yang and

Schrage 2009, Deneckere et al. 1997, Andersson et al. 1998, Desai et al. 2001 and Kumar

et al. 2001). While a two-point distribution assumption makes analysis tractable, it has

the disadvantage in that a two-point distribution cannot be used to properly approximate

unimodal distributions (such as normal distribution) that are commonly observed in practice

and analyzed in the literature. Therefore, we assume that channel demands follow three-

point distributions. Three-point distributions can be used to e¤ectively approximate many

other continuous distributions such as normal, lognormal and beta distributions (Keefer and

Bodily 1983, Keefer 1994). In reality, this approximation has already been widely applied in
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decision and risk analyses such as decision trees (Cobb 2011) and asset valuation (Tseng and

Lin 2007, Nosic and Weber 2010), and in engineering-economic analyses such as drug design

in pharmaceutical industry (S.Stonebraker and L.Keefer 2009, Stonebraker 2002) and R&D

projects (Perdue et al. 1999). It turns out that the assumption of three-point distributions

is critical to our results: The channel integration strategy may be di¤erent for unimodal

demands and bimodal demands.

This chapter is organized as follows. Section 4.2 reviews the literature. Section 4.3

speci�es the assumptions and develops the model. We consider the case with only one retail

store in the physical channel in Section 4.4, and conduct numerical experiments in Section

4.5 to test the robustness of our analytical results as well as investigate the multiple-retail-

store case. Section 4.6 presents a circular model for dual-channel retailing systems, and

Section 4.7 concludes the chapter.

4.2 Literature Review

The integrated dual-channel retailing system is modeled as a newsvendor network (Van

Mieghem and Rudi 2002), where multiple resources are utilized to meet di¤erent streams of

demand. In our model, resources are re-allocated to meet a di¤erent stream of demand via

transshipment. Therefore, our work is related to the vast literature on transshipment. The

existing work on transshipment focuses on the optimal inventory ordering and allocation

policies in centralized systems (see, for example, Krishnan and Rao 1965, Tagaras 1989,

Robinson 1990, Tagaras and Cohen 1992, Bassok et al. 1999, Herer and Rashit 1999,

Axsäter 2003, Wee and Dada 2005, Herer et al. 2006, and Çömez et al. 2011b) or the

coordination issues existing in decentralized systems (Rudi et al. 2001, Anupindi et al.

2001, Granot and So�íc 2003, So�íc 2006, and Çömez et al. 2011a).

Our work departs from these two streams of research in that we focus on the network

design problem with transshipment. In their seminal work, Jordan and Graves (1995)

demonstrate that limited �exibility yields most of the bene�ts of total �exibility and a
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chaining strategy is e¤ective in providing limited �exibility. Our work is similar in spirit

to Jordan and Graves (1995) in that we study how to incorporate limited �exibility in a

newsvendor network. However, our focus is on the direction of the added �exibility instead

of its degree. Lu and Van Mieghem (2009) and Dong et al. (2010) examine the issue of �ex-

ibility direction in the context of global facility network design using a newsvendor network.

Lu and Van Mieghem (2009) demonstrate that the direction of �exibility depends on the

demand characteristics and relative magnitude of price and manufacturing cost di¤erentials.

Dong et al. (2010) study how exchange rate uncertainty and responsive pricing a¤ect the

optimal network con�guration. In contrast to these two papers, we assume that there are

no cost and price di¤erences between the two channels to distill the impact of the channel

demand characteristics on the channel integration strategy. In addition, we also study the

impact of the number of retail stores, which has not been addressed in the earlier studies.

Seifert et al. (2006) study the channel integration problem of a multi-channel retail-

ing system from a supply chain�s perspective and demonstrate that the cost savings from

an integrated system using the store-to-site strategy can be signi�cant. However, they

compare the performance of the store-to-site strategy to the performance without any in-

tegration (two independent channels), rather than compare the performance of di¤erent

integration strategies as we do in this chapter. Alptekinoglu and Tang (2005) and Bendoly

et al. (2007) also compare dual-channel retailing systems with the �store-to-site�strategy

to those without integration. They do not allow transshipments between the two channels

as a recourse action. Instead, they allocate a fraction of online orders to be ful�lled by

the physical channel in anticipation of future demand, and the unsatis�ed demand of either

channel is backordered.

Online retailing has brought other new challenges to both practitioners and researchers.

Bhargava et al. (2006) and Sun et al. (2008) study stockout compensation and stock-

less operation phenomenon that are commonly practiced in the online retailing industry.

However, they do not consider the channel integration strategy under a dual-channel en-

vironment. Online retailing also changes the interactions between di¤erent members of a
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supply chain. Within the dual-channel retailing literature, many recent papers focus on the

strategic interaction between a manufacturer who operates an online channel and a retailer

who operates retail stores (Chiang et al. 2003, Tsay and Agrawal 2004, Cattani et al. 2006,

Ryan et al. 2008, and Chen et al. 2008). Di¤ering from this stream of research, we focus

on the integration of the physical and online channels that are operated by a single �rm.

4.3 Model and Assumptions

We consider the channel integration problem of a retailer who sells one product in a dual-

channel retailing system. The dual-channel system consists of an online store and n retail

(physical) stores. The retailer can integrate the two channels using two alternative strategies:

site-to-store and store-to-site. In both strategies, each channel ful�lls the customer demand

from its own inventory �rst. With the site-to-store strategy, the excess inventory in the

online channel is used to �ll the unmet demands of the retail stores. With the store-to-site

strategy, the excess inventory in the retail stores is used to �ll the unmet demand of the

online channel. The retailer chooses the strategy that maximizes his expected pro�t.

We study the retailer�s channel integration decisions by modeling the dual-channel re-

tailing system as a newsvendor network. We focus on a single-period model for convenience

in exposition and for gaining clear insights. Our model assumptions satisfy the conditions

de�ned in Ignall and Veinott (1969). Therefore, a multi-period inventory optimization prob-

lem can be reduced to a newsvendor network problem (see, also, Nahmias and Smith (1994),

McGavin et al. (1997), and Agrawal and Smith (2000) for discussion). Consequently, our

analysis and insights can be extended to multi-period cases.

At the beginning of the period, the retailer decides, for the online store and each retail

store, respectively, the nonnegative order quantities Qo and Qri, before observing demands

Do and Dri. Here, the subscript o and ri refer to online store and retail store i; respectively,

where i = 1; :::; n. When there is only one retail store, we drop the subscript i; and use

Qr and Dr to denote the retail store�s order quantity and demand, respectively. After the
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demands materialize in both channels, each channel �rst �lls its own demand. Then, the

leftover inventory from one channel is used to �ll the excess demand of the other channel

based on the integration strategy.

We assume that the unit ordering cost is c and the unit (retail) price is p in both channels;

see Cattani et al. (2006) for an argument in favor of the identical price assumption in the two

channels. In addition, when the site-to-store strategy is adopted, each unit of inventory from

the online store warehouse to ful�ll the demand in a retail store incurs a transshipment cost

�OR to the retailer. This transshipment cost can represent the transportation cost from the

online store warehouse to the retail store or to the customer�s home. It can also be considered

as the order-ful�llment handling cost in the online store warehouse. When the store-to-site

strategy is adopted, the shipping cost for home delivery is usually borne by the customers.

However, because the retail stores are not designed for individual-product handling, the

online order ful�llment in the retail stores is not as e¢ cient as that in the online store,

which leads to a relatively high handling cost. Let �RO be the cost of handling in excess of

what is incurred in the online store. We assume that �OR = �RO = � to isolate the e¤ects

of product contribution margin and demand characteristics on the integration strategy. For

simplicity, we assume no salvage value for the leftover inventory and no penalty cost for

lost sales, although they can be incorporated into our model with additional notations, but

without additional insights. To avoid trivial cases, we assume p > c (for the retailer to

participate) and p > � (for transshipment to be bene�cial). Let Fx(d) = Pr[Dx � d] denote

the cumulative distribution function (CDF) of the random variable Dx. We call the retailing

system adopting the store-to-site strategy (resp., the site-to-store strategy), the RO system

(resp., the OR system), where R represents Retail store and O represents Online store.

4.4 Integration Strategy with One Retail Store

In this section, we assume that there is only one retail store in the physical channel, and we

study two scenarios. In the �rst scenario (Section 4.4.1), inventory is allowed in one channel
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only �either in the physical channel (retail store) or in the online channel (online store).

This scenario corresponds to the industry practice followed by Tesco, Gap, and Fnac for

the store-to-site strategy and by Dell for the site-to-store strategy. In the second scenario

( 4.4.2), we examine the integration strategy when inventory can be kept in both channels.

The second scenario corresponds to the industry practice followed by Orvis Company Inc.,

Systemax Inc.�s CompUSA, and Jones Apparel Group for the store-to-site strategy and

by Adidas, Walmart, and Kohl�s for the site-to-store strategy. Whether the inventory is

stocked in only one channel or in both is assumed to be given, and so we focus on the

optimal strategy under the two scenarios: stocking inventory in one channel only or in both

channels.

4.4.1 Inventory in One Channel Only

First, we consider the RO system, and the OR system can be assessed in a similar manner.

In the RO system, the retailer orders Qr for the retail store and uses it to meet demands in

both channels. The retailer�s expected pro�t �RO(Qr) can be written as

�RO(Qr) = �cQr + E[pmin(Qr; Dr) + (p� �)min((Qr �Dr)
+; Do)]: (4.1)

This expression consists of the ordering cost cQr, the expected revenue E[pmin(Qr; Dr)]

from the sales in the retail store, and the expected revenue (net of transshipment cost)

E[(p� �)min((Qr �Dr)
+; Do)] from the online store. It is easy to prove that the retailer�s

optimal order quantity is determined by

�

p
Fr(Qr) +

p� �
p
F+(Qr) =

p� c
p
; (4.2)

where F+(�) denotes the distribution function of D+ = Dr +Do. An important observation

is that the left-hand side of (4.2) is a distribution function, because it is a mixture of two

distribution functions, and the right-hand side is the newsvendor critical ratio. Therefore,
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the RO system is equivalent to a newsvendor problem with the purchasing cost c, the retail

price p, and the demand

DRO =

�
Dr with probability of �p ;

D+ with probability of
p��
p
:

(4.3)

Similarly, the OR system is equivalent to a newsvendor problem with the purchasing cost

c, the retail price p, and the demand

DOR =

�
Do with probability of �p ;

D+ with probability of
p��
p
:

(4.4)

Here we should point out that Zhang (2005) established the equivalence between an

inventory problem with transshipment and a newsvendor problem, and used the equivalence

result to extend the anaysis of Dong and Rudi (2004) to general demand distributions. Our

equivalence result is similar to that in Zhang (2005); however, the transshipment in our

model is one way while it is two way in Zhang (2005).

By comparing (4.3) and (4.4), we notice that the RO and OR systems face the same

demand D+ with probability
p��
p
, whereas the RO system faces the demand Dr with prob-

ability �
p
and the OR system faces the demand Do with the same probability. To compare

the performance of the two systems, we compare their demands in two stochastic orders:

the usual stochastic order and concave order. A random variable X is larger in the usual

stochastic order (resp., in the concave order) than a random variable Y if and only if for

all increasing (resp., concave) functions f we have E[f(X)] � E[f(Y )] (Müller and Stoyan

2002). In this chapter, we term �non-decreasing�(resp., �non-increasing�) simply as �in-

creasing�(resp., �decreasing�). Since the pro�t of a newsvendor is increasing and concave

in the demand realization, the expected pro�t is increasing when the random demand in-

creases in the usual stochastic or concave order. Let �RO and �OR be the respective optimal

expected pro�ts of the RO and OR systems. Proposition 4.4.1 characterizes the optimal

strategy when inventory is to be kept only in one channel.
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Proposition 4.4.1 (i) If Dr �st Do (resp., Dr �st Do), that is, Dr is larger than (resp.,

smaller than) Do in the usual stochastic order, then �RO � �OR (resp., �RO � �OR). (ii)

If Dr �cv Do (resp., Dr �cv Do), that is, Dr is larger than (resp., smaller than) Do in the

concave order, then �RO � �OR (resp., �RO � �OR).

Proposition 4.4.1 states that if the retailer can choose only one channel to stock inventory,

he should choose the channel with (stochastically) larger demand or the channel with less

uncertain demand (in the concave order). It is important to point out that the result does

not necessarily hold if we only compare the average demands of the two channels, that is,

if �r � �o (resp., �r � �o), we cannot conclude that �RO � �OR (resp., �RO � �OR).

4.4.2 Inventory in Both Channels

In this section we allow both channels to keep inventory. Recall that the order quantities of

the retail and online stores in the RO system are denoted as Qr and Qo, respectively. The

expected pro�t of the RO system can be written as

�RO(Qr; Qo) = �c(Qr +Qo) + E[pmin(Qr; Dr)

+pmin(Qo; Do) + (p� �)minf(Qr �Dr)
+; (Do �Qo)+g]: (4.5)

Similar, the retailer�s expected pro�t of the OR system is

�OR(Qr; Qo) = �c(Qr +Qo) + E[pmin(Qr; Dr)

+pmin(Qo; Do) + (p� �)minf(Qo �Do)
+; (Dr �Qr)+g]: (4.6)

Owing to the di¢ culty in obtaining analytical results for demands with general distribu-

tions, we consider the situation in which demandsDr andDo follow three-point distributions.

Specially, Dr takes three values �r � �r, �r, and �r + �r with probability k, 1 � 2k, and

k, respectively. Similarly, Do takes three values �o � �o, �o, and �o + �o with probability
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k, 1 � 2k, and k, respectively. Thus, E [Dr] = �r, Stdev[Dr] =
p
2k�r, E [Do] = �o and

Stdev [Do] =
p
2k�o. We further assume that 0 � k � 1=2 to ensure positive probabilities

for all three values. Lemma 4.4.2 demonstrates that the optimal strategy is independent of

demand means.

Lemma 4.4.2 �RO � �OR is independent of �r or �o.

Lemma 4.4.2 is intuitive, because the expected pro�ts of both systems are a¤ected by

the demand means only through their total (that is, �r+�o). This implies that any change

in a demand mean will change the expected pro�ts of both systems equally, and therefore it

will not impact the relation between the two systems. Therefore, without loss of generality,

we assume �r = �o = � in the remainder of this section, since all our results with this

assumption continue to hold when �r 6= �o. Next, we examine how the second moment of

demand a¤ects the channel integration strategy. Since when �r = �o, OR and RO systems

are equivalent, we are interested in developing insights when �o and �r are di¤erent. Without

loss of generality, we assume that �o > �r. With this assumption, we have Stdev [Do] >

Stdev [Dr]. To develop insights that are transparent and easy to communicate, we further

assume �o=�r � 2� �=c. Our computational studies indicate that the key insights continue

to hold when this condition is violated. More importantly, the channel integration strategy

will not a¤ect the �rm�s pro�t signi�cantly when this condition is violated. To present our

main result, we introduce some notations. Let

k1 := [(p� c)(�o � 2�r) + ��r]=[p�o � 2(p� �)�r];

and k2 2 [0; 1=2] be the unique root of

(p� c)(�o � �r) + [p�rk � p�ok + (p� �)�rk2] = 0

if the root exists; otherwise we set k2 to 1=2. The values of k4; � � � ; k8 below are set similarly.
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Let

k3 := [c(�o � 2�r) + ��r]=[p�o � 2(p� �)�r];

and k4; k5; k6;k7; k8 2 [0; 1=2] be the unique roots, respectively, of the following equations

c(�o � �r) + pk(�r � �o) + (p� �)k2�r = 0) = 0;

(2c� p)�r + (p� c� pk)�o + (p� �)[�r(1� 2k)(2k � 1)� 2�rk2 + �ok2 � k(1� 2k)�o] = 0;

p� c� pk + (p� �)k2 = 0;

(p� 2c)�r + (c� pk)�o + (p� �)[�r(1� 2k)(2k � 1)� 2�rk2 + �ok2 � k(1� 2k)�o] = 0;

and

pk � c� pk2 + �k2 = 0.

De�ne

�k :=

8>>>>>><>>>>>>:

minfk1; k2g if �o=�r � 2 and p � c=(1� k);

1=2 if �o=�r � 2 and c=(1� k) < p � 2c;

minfk5; k6g if 2� �=c � �o=�r < 2 and p � c=(1� k);

k5 if 2� �=c � �o=�r < 2 and c=(1� k) < p � 2c;

k̂ :=

8>>>>>><>>>>>>:

1=2 if �o=�r � 2 and 2c < p < c=k;

minfk3; k4g if �o=�r � 2 and p � c=k;

k7 if 2� �=c � �o=�r < 2 and 2c < p < c=k;

minfk7; k8g if 2� �=c � �o=�r < 2 and p � c=k:

Now, we can present the main result of this chapter.

Proposition 4.4.3 i) p = 2c, �RO = �OR.

ii) If p < 2c, when k � �k, �RO � �OR, otherwise �RO � �OR.

iii) If p > 2c, when k � k̂, �RO � �OR, otherwise �RO � �OR.

From Proposition 4.4.3, the optimal strategy depends on the contribution margin of the
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product and the demand distribution shape (in terms of k). When p = 2c, the site-to-

store and store-to-site systems are equivalent. For low-margin products (when p < 2c), the

site-to-store system (weakly) dominates the store-to-site system when k is small; the store-

to-site system (weakly) dominates the site-to-store system when k is large. For high-margin

products (when p > 2c), the dominance relationships between the two systems are the other

way around.

To better understand the impacts of product contribution margin and channel demand

distribution shape on the �rm�s optimal strategy, we plot the �rm�s optimal strategy in

the (k; p)-plane in Figure 4.1. When k is small, the two integration strategies are equi-

valent. When k is large, however, the optimal transshipment directions for low-margin

and high-margin products are opposite to one another. Speci�cally, when p = 2c, the two

transshipment directions yield the same pro�t for the �rm regardless of the value of k. For

high-margin products, as k increases, the �rm�s optimal strategy will switch from store-to-

site to site-to-store. However, for low-margin products, as k increases, the �rm�s optimal

strategy switches from site-to-store to store-to-site. The following corollary regarding the

optimal strategy for two-point demand distributions follows directly from Proposition 4.4.3.

Corollary 4.4.4 Assume k = 0:5: Then, �RO � �OR if p < 2c; �RO � �OR if p > 2c.

The fact that the two channel integration strategies yield the same pro�t for the �rm

when k is small is not surprising. Intuitively, the �rm�s demand uncertainty is low for a small

k value. As a result, transshipment does not make a signi�cant impact on the �rm�s pro�t.

Consequently, the �rm is indi¤erent to the two integration strategies. In the extreme case

of deterministic demand (when k = 0), the �rm never needs to transship from one channel

to the other.

The impacts of margin and demand distribution shape (in terms of k) on the optimal

strategy are driven by the following three facts. First, following a standard newsvendor

problem argument, for high-margin products, the total optimal order quantities tend to be

greater than the total demand mean; for low-margin products, the total order quantity tend
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Now suppose that k is relatively large, which implies that demand takes high or low

values with high probabilities. To understand the intuition, consider the extreme case

where k = 1=2. If the �rm follows the OR strategy, then we expect the optimal order

quantity to be (Qr; Qo) =(� � �r; � + �o). On the other hand, if the �rm follows the RO

strategy, then the optimal order quantity would be (Qr; Qo) = (� + �r; � � �o). In both

strategies, the transshipment quantities are min(2�r; 2�o) with probability 0.25. However,

the local sales are di¤erent under the two strategies. Speci�cally, the expected local sales

is 2�� �r for the OR strategy and the expected local sales is 2�� �o for the RO strategy.

Clearly, 2�� �r > 2�� �o. So, the OR strategy dominates the RO strategy as predicted by

Proposition 4.4.3.

Proposition 4.4.3 provides analytical insights in guiding a �rm�s channel integration

strategy. In the next section, we test the robustness of these insights for normal and gamma

demand distributions.

4.5 Computational Studies

In this section, we extend our analysis to normal and gamma demand distributions using

numerical studies. Speci�cally, we try to answer the following questions. 1. Are the insights

developed in the previous section robust to demand distribution assumptions? 2. When

does channel integration strategy matters? 3. What is the impact of the number of retail

stores on the �rm�s channel integration strategy?

4.5.1 Robustness

In this section, we �rst study the optimal strategy when the channel demands Dr and Do

are normally distributed, and then discuss the case in which the channel demands are with

gamma distributions. Let the mean and standard deviation of Dr (resp., Do) are �r and

�r (resp., �o and �o), respectively. Note that for normally distributed demands, a three-

point distribution approximation will require a small k value. For example, when we use
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three-point distributions to approximate the standard normal distribution, we should set

k = 0:3035 (P�ug 2001). Consequently, we provide the following guideline for channel

integration strategy for normal demands based on Proposition 4.4.3.

Guideline 1: Suppose p � 2c. Then �RO � �OR if �r � �o, and �RO � �OR if �r � �o.

Suppose p < 2c. Then �RO � �OR if �r � �o, and �RO � �OR if �r � �o.

We use computational studies to test the above guideline which can lead to the optimal

strategy. Our computational study starts with a base-case scenario with c = 7, p = 14,

� = 3, �o = �r = 20, �o = �r = 8 and � = 0, where � is the correlation coe¢ cient between

the two channel demands. Subsequently, additional scenarios are generated by varying one

of the problem parameters: the product price p, the standard deviation �r of the retail store

demand, the transshipment cost � , and the demand correlation coe¢ cient �. Speci�cally,

we vary �r from 4 to 16, the retail price p from 8 to 25, and the transshipment cost � from 0

to 4, all in steps of 1. We also vary � from -0.5 to 0.5 in steps of 0.1. For each test instance

generated, we �rst compute the optimal order quantities for both integration strategies by

solving the �rst-order conditions using the built-in functions of Matlab. Then, the built-

in functions of Matlab are used to compute the expected pro�ts of the two integration

strategies. Finally, we compare the resulting optimal pro�ts of the two strategies to obtain

the optimal strategy.

Among all 12870 cases we have considered, the optimal strategies are consistent with

our guideline. Figures 4.2, 4.3, 4.4 summarize our computational results. The vertical axis

in all these �gures represents

Percentage of Profit Increment =
�RO � �OR
�OR

� 100.

Consequently, RO system is optimal when the Percentage of Pro�t Increment is positive;

otherwise, OR system is optimal.

Figure 4.2 illustrates how the percentage of pro�t increment changes with respect to the

demand uncertainty ratio (�r=�o) and the retail price. We can see that, consistent with our
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the margin is high is opposite to the transshipment direction when the margin is low. Owing

to the fact that a gamma density is not symmetric, the critical value of the gross margin

(p � c)=p to di¤erentiate the low-margin from high-margin products is not 50% as in the

three-point or normal demand case. As a matter of fact, the critical value of the gross

margin may be di¤erent for di¤erent problem instances. However, our insights regarding

the optimal strategies remain valid: When the margin is high, the retailer should use the

channel with low demand uncertainty to feed the channel with high demand uncertainty,

and it is the other way around when the margin is low.

4.5.2 When Does Integration Strategy Matter?

Of course, channel integration comes with a cost. Therefore, besides the optimal integration

itself, we would like to know when the choice of integration strategy makes a signi�cant

di¤erence to the �rm�s pro�t. That is, when does integration strategy matter? From

the de�nition of Percentage of Pro�t Increment, we know that when the absolute value

of Percentage of Pro�t Increment increases, the �rm can bene�t more by adopting the

appropriate strategy instead of the other.

We can see from Figure 4.2 that for high-margin products (Figure 4.2a), the di¤erence

between the two systems becomes larger when the price increases, while for low-margin

products, the di¤erence between the two systems becomes larger when the price decreases.

As a matter of fact, when c = 7 and p = 8, the di¤erence between the two systems can be

as large as 20%. Thus, we conclude that the integration strategy is of consequence when

the margin is very high or very low.

Figure 4.3 illustrates that, the integration strategy matters when the transshipment cost

is high regardless of the margin. Obviously, with either integration strategy, the optimal

pro�t decreases as the transshipment cost increases. However, from Figure 4.3 we can infer

that with a high transshipment cost, a wrong integration strategy would deteriorate the

�rm�s performance more than the right integration strategy would. In other words, when
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the two channels are integrated using a proper strategy, the optimal pro�t is less sensitive

to the increase in the transshipment cost.

Figure 4.4 demonstrates how the coe¢ cient of correlation between the two channel de-

mands impacts the value of the optimal strategy for high-margin products (Figure 4.4a) and

low-margin products (Figure 4.4b). As shown in these two �gures, regardless of the mar-

gin, the optimal strategy yields higher bene�t with strongly negatively correlated demands

between the two channels. Intuitively, when demands are strongly positively correlated, the

bene�t from risk pooling is low. Therefore, the gain from the right integration strategy is

also expected to be low. In practice, demands in the two channels tend to be independent.

(For example, based on the weekly sales data for HP printer at 178 retail stores and the HP

Shopping Village, Seifert et al. (2006) report that the correlation between retail store sales

and the HP Shopping Village sales is 0.0494.) From Figure 4.4 we can see that, for products

whose demands tend to be fairly independent, the improvement from the right integration

strategy can be signi�cant, especially for low-margin products. Among all cases illustrated

in Figures 4.2 to 4.4, the integration strategy matters when the di¤erence between the two

channel demand uncertainties is large.

In summary, the channel integration strategy would make a signi�cant impact on the

�rm�s pro�t when the product contribution margin is very high or very low, when the trans-

shipment cost is high, when demand correlation between the two channels is low, or when

the di¤erence between the two channel demand uncertainties is large. Our computational

studies for gamma demand distributions also reveal similar insights.

4.5.3 Integration Strategy with Multiple Retail Stores

In practice, retailers usually operate multiple retail stores. In this section, we examine

how the number n of retail stores a¤ects the channel integration strategy. To facilitate the

computational study, we assume that there is no transshipment between the retail stores.

We discuss the case with transshipment between the retail stores in Section 4.7.
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As n increases, the �total demand uncertainty�in the physical channel increases. Based

on Proposition 4.4.3 and the insights developed in Section 4.5.1, we provide the following

guideline for the optimal strategy regarding the impact of the retail store number.

Guideline 2: For high-margin products, the �rm should adopt the site-to-store strategy

when the number of retail stores is large. For low-margin products, the �rm should use the

store-to-site strategy when the number of retail stores is large.

To test our guideline, we �rst conduct a series of numerical experiments for normal

demands. In our computational study, we assume that the demand Dri (i = 1; 2; :::; n) in

di¤erent retail stores are identically distributed with mean �r and standard deviation �r.

The coe¢ cients of correlation between the online demand and each retail store�s demand

are identical as �. We �x c = 6; �o = 50; �o = 16; �r = 12; �r = 4; � = 1, � = 0,

p = 13 or 8, and increase the number of retail stores from 2 to 20 in steps of one to generate

38 instances. Figure 4.5 summarizes the results and illustrates how the optimal strategies

for high-margin products (Figure 4.5a) and low-margin products (Figure 4.5b) change as

the number of retail stores increases. We can see from these �gures that, these results are

consistent with our guideline. As the number of retail stores increases (more retail stores

are open), the total uncertainty in the retail channel becomes large. The company should

switch from the store-to-site strategy to the site-to-store strategy for high-margin products.

An example in practice is that of Adidas, which adopts the site-to-store strategy for selling

high-margin products in numerous retail stores.

In addition, as the number of retail stores increases, the company can bene�t more by

choosing the correct integration strategy for both high-margin and low-margin products.

This implies that the integration issue is more important for a nationwide retailer with

more retail stores than a local retailer with fewer stores.

When there is only one retail store, we have a clear and simple rule to decide which

integration strategy is optimal under all kinds of scenarios. However, in the case of multiple

retail stores, the rule is not as clear. Hence, we develop a heuristic based on Proposition
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integration strategies for 180 problem instances. The optimal strategy is found by using

Monte Carlo simulation, and the heuristic integration strategy is attained by applying the

simple Guideline 3.

Table 4.1(a) for p = 13 (p > 2c), and Table 4.1(b) for p = 8 (p < 2c) summarize our

computational results. Each table consists of 90 cells. The cells with gray background

are the instances in which the optimal and heuristic integration strategies di¤er. Within

these cells, the light face system denotes the optimal strategy while the bold face system

denotes the heuristic strategy. For the problem instances corresponding to the other cells,

the heuristic strategy is identical to the optimal strategy, as speci�ed in the tables.

Table 4.1. Optimal Strategy (light face) vs. Heuristic Strategy (bold face): (a) p > 2c; (b)
p < 2c

From both tables, we see that the heuristic yields the optimal strategy in most instances.

Speci�cally, the heuristic strategy is optimal in 86 (resp., 83) out of 90 instances for high-

margin (resp., low-margin) products. The instances in which the optimal and the heuristic

strategies di¤er are close to the diagonal cells, where the demand uncertainties in the two

channels are close. However, the optimal strategy does not a¤ect the �rm�s pro�t signi�c-

antly in these cases. As a matter of fact, the average loss incurred from choosing a wrong

strategy in these cases is only 0.01% for high-margin products and 0.08% for low-margin
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products. We expect that the heuristic will perform even better as the number of retail

stores increases. This is because as the number of retail stores increases, the di¤erence in

the demand uncertainties between the two channels becomes larger. Simulations with other

parameter combinations (i.e., repeating the simulation by varying the value of p, c, � , or

�r, one at a time) as well as with correlated demands (we keep the correlation coe¢ cients

between any two stores to be �0:1=n, �0:3=n, or �0:5=n) yield similar results. Therefore,

the retailer can apply the guideline prescribed above to the multiple-retail-store case without

incurring a signi�cant loss.

Besides the heuristic guideline proposed above, another heuristic is to compare the ex-

pected demands of the two channels. However, from our earlier analysis, we know that the

demand averages do not play a role in determining the integration strategy. This means that

it is possible to have a totally di¤erent (wrong) result by simply comparing the expected

store demands.

4.6 Application: A Spatial Model of Dual-Channel Retailing Systems

In this section, we �rst propose a modi�ed circular spatial model to specialize the demands

of the online store and each retail store in a dual-channel retailing system. The dual-channel

retailing system is modeled with a circle of unit circumference, n retail stores and one online

store. The n retail stores are evenly distributed on the circumference of the circle and the

online store is located at the center of the circle; see Figure 4.6.

The total number of customers is a �xed number m; later in this section, we extend our

model to allow the total number of customers to be a random variable. A customer can

purchase at most one unit of the product. So, each customer has three options: purchasing

one unit from one of the retail stores, purchasing one unit from the online store, or purchasing

nothing; she will choose the option that provides the highest utility. If a customer buys the

product from a retail store, she has to travel to the physical store. As in standard circular

models, we assume that a customer incurs a cost t for one unit of travelling distance. If
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1
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4 0

Figure 4.6. An Illustration of the Circular Model with Four Retail Stores

a customer buys the product from the online store, an inconvenience cost is incurred by

the customer. This inconvenience cost is due to the lack of immediate grati�cation, lack

of physical inspection, or di¢ culty in product return, when compared with an in-store

purchase. We denote the inconvenience factor as k. Let v be the utility from consuming

the product and, as before, let p be the unit price.

We assume that, when purchasing in a retail store, the customer buys the product from

the closest physical store. Therefore, for a customer located at a distance d from the closest

physical store (0 � d � 1
2n
), her utility surpluses of buying in-store and online can be

expressed, respectively, as Ur(d) = ur(d) + �r and Uo = uo + �o; where ur(d) = v� p� d� t

and uo = v � p � k are her respective nominal (expected) utility surpluses of buying in-

store and online, and �i (i = r; o) is a Gumbel random variable. �i�s distribution is Pr(�i �

x) = exp(�e�((x=�)+
)) with mean zero, where 
 is Euler�s constant (
 � 0:5772) and �

is a positive constant. A higher � implies a higher degree of heterogeneity among the

customers. Without loss of generality, we assume that the expected utility of no purchase is

zero. Assume that each customer has an equal probability located at any place on the circle

and each customer�s purchasing decision is independent of the others. Let bri, bo, and bnull

denote the probabilities of purchase from the ith retail store (1 � i � n), from the online

store, and no purchase, respectively. Following the standard analysis of the multinomial
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logit (MNL) model (see, for example, Anderson et al. 1992, p.39-40) and circular model

(see, for example, Tirole 1992, p.282-285), we have

bri =
2�

t
ln

�
exp((v � p)=�) + exp((v � p� k)=�) + 1

exp((v � p� t
2n
)=�) + exp((v � p� k)=�) + 1

�
;

bo =
exp((v � p� k)=�)

exp((v � p� k)=�) + 1(1� nbri); bnull = 1� nbri � bo.

Since br1 = br2 = ::: = brn, we simply term them as br.

Aggregating over all customers, the demand for each individual retail store or the online

store follows a binomial distribution with parameters m and either br or bo. When the

market size is large enough, each of these binomial distributions can be approximated by a

corresponding normal distribution. Therefore, the demand for the ith retail store Dri and

the demand for the online store Do are approximately normal random variables with

Dri � N(mbr;
p
mbr(1� br)); Do � N(mbo;

p
mbo(1� bo));

�DriDo = �

s
brbo

(1� br)(1� bo)
; �DriDrj = �

br
1� br

(i 6= j).

The circular model has been widely used in the literature for the market of di¤erentiated

products since the seminal work of Salop (1979). Balasubramanian (1998) was the �rst to

model a dual-channel retailing system with the circular model by incorporating a direct

channel at the center of the circle. Our model follows Balasubramanian (1998) and captures

the following important features of dual-channel retailing systems with a physical channel

and an online channel. First, the physical channel consists of multiple retail stores and

the online channel consists of only one online store. Second, the travelling distance to a

retail store is a dominant factor that in�uences the patronage of a customer. Third, online

shopping incurs an inconvenience cost for a customer due to, for example, the di¢ culty

of physical inspection and slow shipping; see Forman et al. (2009) for empirical studies

on how the trade-o¤ between the o­ ine transportation cost and the online disutility cost
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determines customer choice of channels. Lastly, all customers have equal access to the

online store. Our model is di¤erent from Balasubramanian (1998) in several ways. The

most important one is that to model customer heterogeneity, we use the MNL random

utility model; as a result, demands are uncertain in our model. To our knowledge, Chen

et al. (2008) is the only paper that studies a dual-channel system with demand uncertainty

that is built on a customer choice model. In their model, demands in the two channels are

perfectly positively correlated, whereas our model allows for more �exibility in modeling

the demand correlation.

Channel Integration Strategy. According to the result in Section 4:5:3, one should

compare p and 2c, as well as n�r = n
p
mbr(1� br) and �o =

p
mbo(1� bo), to decide the

preferred integration strategy. Speci�cally,

Guideline 4: For p > 2c, the preferred strategy is store-to-site if n
p
br(1� br) <p

bo(1� bo) and site-to-store, otherwise. For p < 2c, the preferred strategy is site-to-store

if n
p
br(1� br) <

p
bo(1� bo) and store-to-site, otherwise.

In the following analysis, we use high-margin products (with p > 2c) as an example, and

study the e¤ects of the travelling cost t, the online inconvenience factor k, and the number

of retail stores n on the channel integration strategies. Similar analysis can be made for

low-margin products.

The case with n = 1 is quite straightforward. In the following analysis, we assume n � 2

unless otherwise speci�ed. Because nbr + bo � 1, we have br � 1=2 if n � 2. We can also

safely assume bo � 1=2, considering the relatively small portion of online sales. Notice that

the function x(1 � x) increases in x when x � 1=2. Therefore, n�r (resp., �o) increases in

br (resp., bo).

Impact of online-shopping inconvenience factor. It is easy to see that bo increases

and br decreases as the online-shopping inconvenience factor k decreases. Therefore, as the

retailer improves customers�online shopping experience by, for example, redesigning the

web site, o¤ering more return options, or o¤ering free shipping,
p
bo(1� bo) will increase
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and n
p
br(1� br) will decrease. Based on our channel integration guideline, we have the

following result:

A retailer following the store-to-site strategy should continue following the

same strategy as the inconvenience factor decreases. On the contrary, a site-to-

store strategy follower should watch the relationship between
p
bo(1� bo) and

n
p
br(1� br) closely as the inconvenience factor is improved.

Impact of unit travelling cost. Similarly, as the unit travelling cost t decreases,

customers are more willing to visit and then buy from physical stores. This implies a

higher br and a lower bo, and therefore a higher n
p
br(1� br) and a lower

p
bo(1� bo).

Consequently, we have the following result:

As the travelling cost decreases, a site-to-store strategy follower can stay with

his channel integration strategy while a store-to-site strategy follower should be

ready to switch to the alternative strategy.

Impact of number of retail stores. As more retail stores are opened, customers

on average have a shorter travelling distance, and then can save on travelling cost. Hence,

the expected demand of the online channel decreases. The expected demand for individual

physical stores also decreases, but the expected total demand for the whole physical channel

increases. That is, bo (and hence
p
bo(1� bo)) and br decrease in n, while nbr increases in

n. Because n
p
br(1� br) =

p
n� nbr � (1� br), we know that n

p
br(1� br) increases in

n. Therefore, we have the following result:

The site-to-store strategy is attractive for a nationwide retailer with many

retail stores.

Extension to random market size. We have specialized our main results to a model

of dual-channel retailing systems that captures important di¤erences between shopping on-

line and o­ ine. In our analysis above, we assume that the potential market size is �xed.
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Our analysis can be extended to the case in which the market size is a random variable M

with E[M ] = �M and Stdev[M ] = �M . With the earlier results for a given market size m

and standard formulas for conditional probability, we can for the random market size M ,

obtain E[Dri] = �Mbr, Stdev[Dri] =
p
�Mbr � b2r(�M � �2M), E[Do] = �Mbo, Stdev[Do] =p

�Mbo � b2o(�M � �2M), Cov(Dri; Do) = �brbo(�M � �2M), Cov(Dri; Drj) = �b2r(�M � �2M),

�DriDo = �
brbo(�M��2M )p

�M br�b2r(�M��2M )
p
�M bo�b2o(�M��2M )

and �DriDrj = �
b2r(�M��2M )

�M br�b2r(�M��2M )
. Here, we can

see that the demand correlation between the physical and online channels can be positive,

zero, or negative, depending on the relation between �M and �2M . Therefore, our circular

model is very �exible in modeling the demands of dual-channel retailing systems. From

our results in x4:5, the demand correlation will not change the basic integration guideline.

Therefore, retailers should again choose the integration strategy according to the product

contribution margin and standard deviations of both channel demands.

4.7 Conclusion

Although it is well known that a retailer can bene�t from dual-channel integration, less

is known about how to integrate a physical channel and an online channel e¤ectively. In

this chapter, we present an analytical model to study channel integration decisions in a

dual-channel retailing system by focusing on two standard integration strategies: store-

to-site and site-to-store, and compare their performance under di¤erent scenarios. Our

model belongs to the broad class of newsvendor networks but has a distinct focus on the

network design in the presence of interchannel one-way transshipment. We contribute to

the newsvendor network literature by studying the optimal network design problem under

three-point demand distributions. Via our numerical studies, we show that the insights

developed under three-point demand distributions continue to hold for normal and gamma

demand distributions.

We provide a simple heuristic to identify an e¤ective integration strategy for the multiple-

retail-store case. The heuristic only requires evaluating the standard deviation of the de-
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mand in the online channel and the total of the standard deviations of all the retail stores�

demands in the physical channel. Note that our heuristic is based on the result that an

n-retail-store system (with no transshipment between the stores) is equivalent to a one-

retail-store system. When transshipment is allowed between the retail stores, such an equi-

valence result can also be established by adjusting the demand of the equivalent retail store.

Consequently, our heuristic can be extended to such cases in a straightforward way.

Finally, we propose a circular spatial model for dual-channel retailing systems. The

model captures main drivers for customer purchasing behavior, such as the travelling dis-

tance to a retail store and the inconvenience of shopping online. We demonstrate how our

results can be applied to these retailing systems and develop insights on how customer

purchasing behavior drivers impact a retailer�s channel integration strategy.

In our model, the optimal strategy is developed by examining the demand characteristics

and contribution margin of one product. In practice, a retailer sells thousands of products

rather than only one product. However, our analysis should help managers to understand

how the two key factors (product contribution margin and channel demand distribution

shape) a¤ect the right channel integration strategy. In addition, we expect that our results

will continue to hold under the multiple-product case, when we consider the average margin

and the distribution shape of the aggregated demand among all the products.
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CHAPTER 5

CONCLUSION AND DIRECTION FOR FUTURE RESEARCH

This chapter concludes the �ndings of this research, and suggests directions for future

research.

In Chapter 2, we study how a monopolistic �rm chooses between two product rollover

strategies, single rollover and dual rollover, when selling to a market composed of both

strategic and myopic customers. The important managerial insights from our analysis are:

� The lower the innovation is, the more valuable single rollover becomes. As the number

of strategic customers increases, single rollover becomes more attractive.

� With low and medium innovation, the �rm can eliminate strategic waiting behavior

completely by committing to single rollover, while with high innovation, waiting in-

centive may be lessened but not completely eliminated.

� With low or medium innovation, a �rm following dual rollover should be ready to

switch to single rollover, especially when the disposal value of the leftover old ver-

sion under single rollover and the proportion of strategic customers are not very low.

Furthermore, such a �rm should search for a high value disposal option.

� With high innovation, a �rm can still increase its pro�t by adopting single rollover

when the proportion of strategic customers is high and the disposal value of the leftover

old version under single rollover is low. Therefore, such a �rm does not necessarily

bene�t from a high value disposal option. A potentially lowest value disposal option is

donating the leftovers, and it can give the highest pro�t. Thus, pro�t-making objective

can lead to socially-responsible outcomes.

84
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� With high innovation, the �rm can introduce both versions hoping that customers will

purchase both of them. With low and medium innovations, however, if the innovation

can compensate the �rm�s pro�t discounting and customers�value depreciation over

time, the �rm should skip the old version in order to eliminate the cannibalization for

the new version; otherwise, as long as customers value the current (old) version, the

�rm should introduce it as soon as possible to avoid the loss from time depreciation.

According to Saunders and Jobber (1994), slightly more than half of the companies use

some sort of dual rollover strategy. Erhun et al. (2007) point out that dual rollover is

widely used in the high-tech industry. The managerial insights above can help companies

to decide whether they should switch to single rollover. Our numerical study shows a broad

application potential and signi�cant pro�t increase with single rollover compared with dual

rollover. These application areas broaden further as innovation rate drops with frequent

product introductions and/or as more customers are better informed and become strategic.

In Chapter 3, we investigate the impact of rollover strategies (single and dual rollovers)

and customer behavior (strategic and myopic behaviors) on a �rm�s innovation level and

pro�t. The most interesting �nding is that strategic behavior speeds up a �rm�s innovation

process, which is di¤erent from the common wisdom and the extant marketing literature.

Table 5.1 below summarizes our main results:

Table 5.1. Comparison of Pro�t and Innovation in Four Settings
�M-DR � �M-SR

> =
�S-DR � or � �S-SR

�M-DR � �M-SR

� =
�S-DR � or � �S-SR

In this chapter, we study the impact of strategic waiting behavior on innovation level.

Besides the strategic waiting, customers may have other features/behaviors, such as the

exclusivity-seeking behavior as discussed in Toktay et al. (2011). It will be interesting

to study how the other customer behaviors impact a �rm�s innovation path and how the

di¤erent rollover strategies in�uence the other customer behaviors.
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In Chapter 4, we compare two typical dual-channel integration strategies: site-to-store

and store-to-site. Table 5.2 summarizes our prescription for choosing an appropriate channel

integration strategy when k is small. In the table, Channel A �> Channel B means that

the leftover inventory in Channel A is used to ful�ll the unmet demand in Channel B. With

a large value of k, the direction of transshipment stays the same when inventory is stored

in only one channel, while the direction of transshipment reverses when inventory is kept in

both channels.

Table 5.2. Summary of Channel Integration Guidelines When k is Small
Direction of Transshipment

Inventory in one channel Inventory in both channels
High-margin
products

Channel with stochastically lar-
ger or less uncertain demand �>

Channel with lower demand uncertainty
�> Channel with higher demand uncer-
tainty

Low-margin
products

Channel with stochastically smal-
ler or more uncertain demand

Channel with higher demand uncertainty �
> Channel with lower demand uncertainty

Additionally, our results provide the following important managerial insights: (1) As

the number of retail stores increases, the site-to-store (resp., store-to-site) strategy becomes

more attractive for high-margin (resp., low-margin) products with normal channel demands.

(2) Managers should pay particular attention to integration strategies when facing one

or more of the following situations under which the optimal strategy makes a signi�cant

di¤erence: (i) the product contribution margin is either very high or very low, (ii) the

transshipment cost is high, (iii) the demand correlation between the two channels is not

strongly positive, and (iv) the demand uncertainty di¤erence between the two channels is

large.

We assume that product demand is not a¤ected by the channel integration strategy and

store demand is not a function of the product inventory level. This assumption holds when

customers are not strategic. It also holds when the products are infrequently purchased or

less promoted. For other products, the channel integration strategy or the inventory levels

may have an impact on channel demands by a¤ecting customers purchasing pattern (see, for
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example, Smith and Achabal 1998, and Chen et al. 2008). For instance, the two channels

when integrated may cannibalize each other or expand the whole market size. It would

be interesting to see how the optimal strategy would be di¤erent when such an impact is

considered.
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CHAPTER 6

PROOFS

6.1 Proofs related to Chapter 2

Proof of Proposition 2.3.1

With more than one version and customer segment in period 2, di¤erent versions can be

targeted to di¤erent segments. We �rst list all possible targeting strategies, and then list the

highest prices that can be used to execute each targeting strategy and consequential stocking

levels. After that, we investigate the conditions under which a certain strategy (involving

both prices and stocking levels) in period 2 is most pro�table in two cases [p1 = Rf ] and

[p1 = v]. Finally, we compute the expected waiting surpluses in each of the two cases.

We use B to denote bargain hunters and use a vector notation to denote a targeting

strategy; the �rst (second) entry in the vector denotes the customer segments targeted by

version V1 (V2) in period 2. For example, [fBg; fP1B;P1NBg] means targeting B with

V1 and both P1B and P1NB with V2. Under each targeting strategy, we also discuss

P1NB�s preference between V1 and V2. With low innovation, the �rm�s all possible targeting

strategies are: [fP1NBg; fP1NBg]; [fBg; fP1NBg]; [fB;P1NBg; fP1NBg]:

The highest prices to execute [fP1NBg; fP1NBg] are high-high prices: p01 =

�v, p2 = �v(1 + �), which are the P1NB�s respective reservation prices for V1 and V2.

With �v(1 + �) � c < �v, the �rm induces P1NB to buy V1 rather than V2. Because

�v(1 + �) � c � 0 and there is no uncertainty in period 2, the �rm produces exactly

[(n � s) � (q1 � s)]+ = (n � q1)+ of V2 to meet all unsatis�ed P1NB demand over�owed

from V1. So, the �rm�s pro�t in period 2 is

�
D(H�H)
2 = [�v(1 + �)� c](n� q1)+ + �vminfn� s; q1 � sg. (6.1)

88
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�
D(H�H)
2 denotes the �rm�s pro�t with H-H strategy in period 2. Similar naming conventions

are used in the appendix.

The highest prices to execute [fB;P1NBg; fP1NBg] are low-high prices: p01 = �,

p2 = �v(1+ �), which are the B�s reservation price for V1 and the P1NB�s reservation price

for V2, respectively. With the positive surplus (�v� �) from V1 and zero surplus from V2,

P1NB prefer V1 and switch to V2 only when V1 is out of stock. The remaining V1s (if any)

after P1NB�s purchase are sold to B. The pro�t is

�
D(L�H)
2 = [�v(1 + �)� c](n� q1)+ + �(q1 � s): (6.2)

In order to execute [fBg; fP1NBg], the �rm needs to make V2 the P1NB�s �rst option,

which requires �v(1 + �)� p2 � �v� �, i.e., p2 � �v�+ �. However, p2 � �v�+ � implies a

negative margin from V2 with low innovation � < (c� �)=(�v). So, [fBg; fP1NBg] cannot

be successfully executed.

[p1 = Rf ]: s = minfq1; ng. If n � q1, then s = n. L-H strategy is better in view of (6.1)-

(6.2) as �D(H�H)2 = 0 < �(q1 � n) = �D(L�H)2 : If n > q1, then s = q1. From (6.1) and (6.2),

we have �D(H�H)2 = [�v(1+�)�c](n�q1) = �D(L�H)2 . Both strategies yield the same pro�t,

because there is no V1 left from period 1 and thus the price of V1 is of no consequence.

Without loss of generality, we take H-H as optimal. Finally, we compute the expected

waiting surplus w(q1; Rf ; 1). When n > q1, the �rm uses H-H strategy and leaves zero

surplus to waiting customers. When n � q1, with p2 = �v(1+�), the surplus from V2 is also

zero. Because P1NB prefer V1 to V2 when n � q1, according to (2.12) and (2.13), we have

w(q1; Rf ; 1) =
R q1
0
fminf q1�x

x�x ; 1g(�v��)+0gf(x)dx+0 =
R q1
0
(�v��)f(x)dx = (�v��)F (q1).

[p1 = v]: s = minfq1; (1 � �)ng. If n � q1
1�� , then s = q1. From (6.1) and (6.2),

�
D(H�H)
2 = �

D(L�H)
2 as in the case [p1 = Rf ]. If q1 < n < q1=(1 � �), then s = (1 � �)n,

�
D(H�H)
2 = [�v(1 + �)� c](n� q1) + �v[q1 � (1� �)n] and �D(L�H)2 = [�v(1 + �)� c](n�

q1) + �[q1 � (1 � �)n]. Because �D(H�H)2 > �
D(L�H)
2 , H-H strategy is optimal. If n � q1,

then s = (1� �)n, �D(H�H)2 = �v[1� (1� �)]n and �D(L�H)2 = �[q1 � (1� �)n]. We then
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have �D(H�H)2 � �D(L�H)2 () �v[1� (1� �)]n � �[q1 � (1� �)n] () n � �
�v�+�(1��)q1.

Since �
�v�+�(1��) <

�
��+�(1��) = 1, we have

�
�v�+�(1��)q1 < q1. Then, L-H strategy is optimal

only for n � �q1
�v�+�(1��) . We can compute the expected waiting surplus as

w(q1; v; 0) =

Z �
�v�+�(1��) q1

0

fminfq1 � (1� �)x
x� (1� �)x ; 1g(�v � �) + 0gf(x)dx+ 0

=

Z �
�v�+�(1��) q1

0

(�v � �)f(x)dx = (�v � �)F ( �

�v�+ �(1� �)q1):

In the �rst equality, when x > �q1
�v�+�(1��) , the �rm uses H-H strategy, which leads to zero

surplus to waiting customers. The second equality follows from minf q1�(1��)x
x�(1��)x ; 1g = 1 when

x < �
�v�+�(1��)q1 < q1. �

Before we prove Proposition 2.3.2, we �rst need to prove Lemmas 6.1.1 and 6.1.2.

Lemma 6.1.1 (Low innovation) With p1 = v, the unique solution to REE conditions

except for the �rm�s pricing optimality (2.11) is � = 0, Wc = (�v � �)F ( �
�v�+�(1��)q1),

Rf = v � (�v � �)F ( �
�v�+�(1��)q1), and q1 as de�ned in i) and ii) below:

i) If c+ �[�v(1 + �)� c] < v, then q1 > 0 and it is the unique solution of @E[�
D;h(q1;v)]
@q1

= 0.

ii) If c+ �[�v(1 + �)� c] � v, then q1 = 0.

Proof. From (2.6), (2.7), (2.8) and Proposition 2.3.1, with p1 = v and q1, we have the

values for �, Wc, Rf . So we focus on characterizing q1. Note that

E[�D;h(q1; v)] = E[vminf(1� �)N; q1g � cq1]

+ �

Z �
�v�+�(1��) q1

0

f[�v(1 + �)� c](x� q1)+ + �[q1 �minf(1� �)x; q1g]gf(x)dx

+ �

Z 1

�
�v�+�(1��) q1

f[�v(1 + �)� c](x� q1)+

+ �v[minfx; q1g �minf(1� �)x; q1g]gf(x)dx; (6.3)

where the �rst termE[vminf(1��)N; q1g�cq1] is the expected pro�t in period 1 and the last
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two terms together are the expected pro�t in period 2 by using the pricing and stocking level

values according to Proposition 2.3.1. We have @E[�
D;h(q1;v)]
@q1

= (v��[�v(1+�)�c])F
�

q1
1��

�
�

c+��F
�

�
�v�+�(1��)q1

�
+�(c��v�)

h
F
�

q1
1��

�
� F (q1)

i
, @E[�

D;h(q1;v)]
@q1

���
q1=0

= v�c��[�v(1+

�)� c], @E[�
D;h(q1;v)]
@q1

���
q1=1

= ��� c < 0 and @2E[�D;h(q1;v)]

@q21
= f(q1) [

��2

�v�+�(1��)
f( �

�v�+�(1��) q1)
f(q1)

�
v(1���)
1��

1
f(q1)

f(q1=(1��))
� �(c � �v�)]. From the MSLR property, f( �

�v�+�(1��)q1)=f(q1) as well as

f(q1)=f(q1=(1� �)) are monotone in q1 in the same direction. So

if
@2E[�D;h(q1; v)]

@q21
crosses 0, it crosses at most once. (6.4)

By combining (6.4) and @E[�D;h(q1;v)]
@q1

���
q1=1

< 0, we know that if @E[�D;h(q1;v)]
@q1

���
q1=0

=

v� c��[�v(1+ �)� c] > 0, then E[�D;h(q1; v)] must be unimodal. Moreover, there exists a

unique positive root achieving @E[�D;h(q1;v)]
@q1

= 0, and this unique positive root q1 maximizes

E[�D;h(q1; v)]. This proves claim i).

Next, we prove claim ii). Rewrite the derivative as @E[�
D;h(q1;v)]
@q1

= v�c��[�v(1+�)�c]�

v(1���)F
�

q1
1��

�
��(c��v�)F (q1)+��F

�
�

�v�+�(1��)q1

�
. Because �

�v�+�(1��)q1 < q1 <
q1
1�� ,

�v� < c, � < 1 and � < 1, we have @E[�D;h(q1;v)]
@q1

< v � c � �[�v(1 + �) � c] � v(1 �

��)F
�

�
�v�+�(1��)q1

�
��(c��v�)F

�
�

�v�+�(1��)q1

�
+��F

�
�

�v�+�(1��)q1

�
= v� c��[�v(1+

�)� c]� fv � �[�v(1 + �)� c + �]gF
�

�
�v�+�(1��)q1

�
< 0. The last inequality follows from

v � c � �[�v(1 + �) � c] � 0 and v � �[�v(1 + �) � c + �] > v � c � �[�v(1 + �) � c]. So,

q1 = 0.

Lemma 6.1.2 (Low innovation) With p1 = Rf , the unique solution to REE conditions

except (2.11) is � = 1, Wc = (�v � �)F (q1), and p1, q1 as de�ned in i) and ii) below:

i) If c+�[�v(1+�)�c] < v, then p1 > c+�[�v(1+�)�c] and q1 > 0, and they can be uniquely

determined from the two equations: p1 = v � (�v � �)F (q1) and F (q1) = p1�c��[�v(1+�)�c]
p1��[�v(1+�)�c+�] .

ii) If c+ �[�v(1 + �)� c] � v, then q1 = 0.

Proof. From (2.6), (2.7), (2.8) and Proposition 2.3.1, with p1 = Rf and q1, we have

the values for �, Wc. From Proposition 2.3.1, we have w(q1; Rf ; 1) = (�v � �)F (q1), which
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together with (2.7) and (2.8) yields Rf = v � (�v � �)F (q1). So, according to (2.6), (2.10),

and Rf = v� (�v� �)F (q1), we can obtain q1 and p1 by solving the simultaneous equations8<: q1 = argmaxq1 E[�
D;l(q1; Rf )];

p1 = Rf = v � (�v � �)F (q1);
(6.5)

where E[�D;l(q1; Rf )] is the �rm�s expected total pro�t and

E[�D;l(q1; Rf )] = E[Rf minfN; q1g � cq1] + ��
Z q1

0

(q1 � x)f(x)dx

+�[�v(1 + �)� c]
Z 1

q1

(x� q1)f(x)dx: (6.6)

By treating the right-hand sides in (6.5) as functions of p1 and q1, we have

q1(p1) = argmax
q1
E[�D;l(q1; p1)]; (6.7)

p1(q1) = v � (�v � �)F (q1): (6.8)

We prove claims i) and ii) in three steps. Step 1: Optimal q1 in (6.7) is continuous and

non-decreasing in p1 as in Lemma 6.1.3, which is stated and proved below. Step 2: From

(6.8), we see that p1 decreases in q1. Also, p1 = v when q1 = 0; p1 = v(1 � �) + � when

q1 = 1; and v(1 � �) + � � p1 � v. Step 3: From Steps 1-2, there must be a crossing

point of (6.7) and (6.8). In addition, this crossing point is unique due to the non-decreasing

property of q1(p1) in (6.7) and the decreasing property of p1(q1) in (6.8).

Lemma 6.1.3 For a given p1, there exists a maximizer qo1(p1) � 0 of E[�D;l(q1; p1)]. qo1(p1)

satis�es:

i)

qo1(p1) =

8<: 0 if 0 < p1 � c+ �[�v(1 + �)� c];

F�1(p1�c��(�v(1+�)�c)
p1��[�v(1+�)�c+�] ) if p1 > c+ �[�v(1 + �)� c]:
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ii) qo1(p1) is continuous and non-decreasing in p1 for all p1 � 0.

Proof. Similar to the case p1 = v, we have
@E[�D;l(q1;p1)]

@q1
= p1F (q1) � c � �[�v(1 + �) �

c]F (q1) + ��F (q1),
@2E[�D;l(q1;p1)]

@q21
= f(q1)f�[�v(1 + �) + � � c] � p1g, @E[�D;l(q1;p1)]

@q1

���
q1=0

=

p1�c��[�v(1+�)�c] and @E[�D;l(q1;p1)]
@q1

���
q1=1

= ���c < 0. i) We investigate the maximizer

qo1(p1) of E[�
D;l(q1; p1)] in three cases described by increasing p1:

� p1 < �[�v(1 + �) + � � c]: Since c + �[�v(1 + �) � c] > �[�v(1 + �) + � � c], we have
@2E[�D;l(q1;p1)]

@q21
> 0 and @E[�D;l(q1;p1)]

@q1

���
q1=0

< 0. Considering @E[�D;l(q1;p1)]
@q1

���
q1=1

< 0, we have

qo1(p1) = 0.

� �[�v(1 + �) + � � c] � p1 � c + �[�v(1 + �) � c] : We have @2E[�D;l(q1;p1)]

@q21
� 0 and

@E[�D;l(q1;p1)]
@q1

���
q1=0

� 0. Again, we have qo1(p1) = 0.

� p1 > c+�[�v(1+�)�c] :We have @
2E[�D;l(q1;p1)]

@q21
< 0 and @E[�D;l(q1;p1)]

@q1

���
q1=0

> 0. Considering

@E[�D;l(q1;p1)]
@q1

���
q1=1

< 0, we know that qo1(p1) is the unique solution for
@E[�D;l(q1;p1)]

@q1
= 0, that

is, F (qo1) =
p1�c��(�v(1+�)�c)
p1��[�v(1+�)�c+�] . Together, these three cases prove i). ii) For p1 = c+ �[�v(1 +

�) � c], we have F�1(p1�c��(�v(1+�)�c)
p1��[�v(1+�)�c+�] ) = F�1(0) = 0, so qo1(p1) is continuous in p1 � 0.

Since p1�c��(�v(1+�)�c)
p1��[�v(1+�)�c+�] increases in p1 > c + �[�v(1 + �) � c], qo1(p1) is non-decreasing in

p1 � 0.

In this chapter, we use superscripts D; h and D; l on order quantity q1 and/or price p1 to

denote �Dual rollover high price p1 = v�and �Dual rollover low price p1 = Rf�, respectively.

Proof of Proposition 2.3.2

We denote the stocking level de�ned in Lemma 6.1.1 as qD;h1 (�) to emphasize its dependence

on �. From Lemma 6.1.2, with p1 = Rf , the price and stocking level are independent of �,

and thus are denoted by (pD;l1 ; q
D;l
1 ). According to (6.6) and (6.3),

E[�D;l(qD;l1 ; pD;l1 )] = E[pD;l1 minfN; qD;l1 g � cqD;l1 ] + �

Z qD;l1

0

�(qD;l1 � x)f(x)dx

+�

Z 1

qD;l1

[�v(1 + �)� c](x� qD;l1 )f(x)dx: (6.9)
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E[�D;h(qD;h1 (�); v;�)]

= E[vminf(1� �)N; qD;h1 (�)g � cqD;h1 (�)]

+ �

Z �
�v�+�(1��) q

D;h
1 (�)

0

f[�v(1 + �)� c](x� qD;h1 (�))+

+ �[qD;h1 (�)�minf(1� �)x; qD;h1 (�)g]gf(x)dx

+ �

Z 1

�
�v�+�(1��) q

D;h
1 (�)

f[�v(1 + �)� c](x� qD;h1 (�))+

+ �v[minfx; qD;h1 (�)g �minf(1� �)x; qD;h1 (�)g]gf(x)dx;

Then,

lim
�!0

E[�D;h(qD;h1 (�); v;�)] = E[vminfN; qD;h1 (0)g � cqD;h1 (0)] + �

Z qD;h1 (0)

0

�[qD;h1 (0)� x]f(x)dx

+ �

Z 1

qD;h1 (0)

[�v(1 + �)� c][x� qD;h1 (0)]f(x)dx: (6.10)

We have lim�!0E[�
D;h(qD;h1 (�); v;�)] � lim�!0E[�

D;h(qD;l1 ; v;�)] � E[�D;l(qD;l1 ; pD;l1 )],

where the last inequality is from v � pD;l1 : Here we can see that the high price is optimal

when � = 0.

From Lemma 6.1.1, we know that when qD;h1 (�) > 0, it solves @E[�
D;h(q1;v)]
@q1

= 0. According

to the Envelope Theorem (Mas-Colell et al. 1995), for qD;h1 (�) > 0, we have

dE[�D;h(qD;h1 (�); v;�)]

d�

=
@E[�D;h(q1; v;�)]

@�

����
q1=q

D;h
1 (�)

= �v
Z 1

1�� q
D;h
1 (�)

0

xf(x)dx+ �

Z �
�v�+�(1��) q

D;h
1 (�)

0

�xf(x)dx

+�

Z qD;h1 (�)

�
�v�+�(1��) q

D;h
1 (�)

�vxf(x)dx+ �

Z 1
1�� q

D;h
1 (�)

qD;h1 (�)

�vxf(x)dx+ 0
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= (�� � v)
Z �

�v�+�(1��) q
D;h
1 (�)

0

xf(x)dx+ (��v � v)
Z 1

1�� q
D;h
1 (�)

�
�v�+�(1��) q

D;h
1 (�)

xf(x)dx

< 0:

The last inequality is because ���v < 0 and ��v�v < 0. On the other hand, for qD;h1 (�) =

0, we know dE[�D;h(qD;h1 (�);v; �)]

d�
= 0. Therefore, E[�D;h(qD;h1 (�); v;�)] is non-increasing in �.

Notice that E[�D;l(qD;l1 ; pD;l1 )] is constant in �. Let �
L;D = inff� : E[�D;h(qD;h1 (�); v;�)] �

E[�D;l(qD;l1 ; pD;l1 )], where 0 � � < 1g. Then, E[�D;h(qD;h1 (�); v;�)] � E[�D;l(qD;l1 ; pD;l1 )], if

and only if � � �L;D. �

Proof of Proposition 2.3.3

With sales s and market size n, the �rm orders q2 = n � s to sell V2 to every P1NB. The

�rm receives the revenue � from each unit of the leftover V1. So, �S2 = [�v(1 + �)� c](n�

s) + �(q1 � s). �

Proof of Proposition 2.3.4

The �rm can successfully induce all high-end customers to buy in period 1 by setting p1 = v.

Therefore, the �rm �nds the stocking level q1 by maximizing

E[�S(q1; v)] = E[vminfN; q1g � cq1] + �
Z 1

0

[�v(1 + �)� c](x�minfx; q1g)f(x)dx

+ ��[q1 �minfN; q1g]; (6.11)

with respect to q1. Note that
@E[�S(q1;v)]

@q1
= [v � �(�v(1 + �) � c + �)]F (q1) + �� � c,

@2E[�S(q1;v)]

@q21
= �[v � �(�v(1 + �)� c+ �)]f(q1), @E[�

S(q1;v)]
@q1

���
q1=0

= v � c� �[�v(1 + �)� c],

and @E[�S(q1;v)]
@q1

���
q1=1

= �� � c < 0:

If v�c��[�v(1+�)�c] > 0, then @E[�S(q1;v)]
@q1

���
q1=0

> 0. Because v��[�v(1+�)�c+�] >

v� c��[�v(1+ �)� c] > 0, E[�S(q1; v)] is concave in q1. Therefore, we obtain the optimal

solution by solving @E[�S(q1;v)]
@q1

= 0, which results in q�1 = F
�1(v�c��(�v(1+�)�c)

v��[�v(1+�)�c+�] ).

If v � c� �[�v(1 + �)� c] � 0, then @E[�S(q1;v)]
@q1

���
q1=0

� 0. Since @E[�S(q1;v)]
@q1

���
q1=1

< 0, no

matter whether E[�S(q1; v)] is concave or convex in q1, we get q�1 = 0. �
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Proof of Proposition 2.3.5

The proof for the low innovation case is below. Since we can prove the results for the

medium innovation case in a similar manner, we omit its proof for brevity. Claim i) is

the direct result from Lemmas 6.1.1-6.1.2 and Proposition 2.3.4. With q�1 = 0, there is no

leftover V1. Therefore, there is no di¤erence between single rollover and dual rollover. This

is why we have claim i).

Next, we prove claim ii). Let E[�S�] be the �rm�s REE pro�t under single rollover

and qS�1 be the stocking level de�ned in Proposition 2.3.4. Let E[�D;h] and E[�D;l] be the

pro�ts associated with solutions de�ned in Lemma 6.1.1 and Lemma 6.1.2, respectively. Let

E[�D�] = maxfE[�D;h];E[�D;l]g. Therefore, E[�D�] is the �rm�s REE pro�t under dual

rollover. From (6.9), (6.10) and (6.11), we have

E[�D;l] = E[�D;l(qD;l1 ; pD;l1 )]

= E[pD;l1 minfN; qD;l1 g � cqD;l1 ]

+ �[�v(1 + �)� c]
Z 1

qD;l1

(x� qD;l1 )f(x)dx+ ��

Z qD;l1

0

(qD;l1 � x)f(x)dx;

lim
�!0

E[�D;h;�] = lim
�!0

E[�D;h(qD;h1 (�); v;�)]

= E[vminfN; qD;h1 (0)g � cqD;h1 (0)]

+ �[�v(1 + �)� c]
Z 1

qD;h1 (0)

[x� qD;h1 (0)]f(x)dx

+ ��

Z qD;h1 (0)

0

[qD;h1 (0)� x]f(x)dx;

E[�S�] = E[�S(qS�1 ; v)]

= E[vminfN; qS�1 g � cqS�1 ]

+�[�v(1 + �)� c]
Z 1

qS�1

(x� qS�1 )f(x)dx+ ��
Z qS�1

0

(qS�1 � x)f(x)dx;
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From Lemmas 6.1.1-6.1.2 and Proposition 2.3.4, we have q1 > 0 when c+�[�v(1+�)�c] <

v. In addition, according to the proof of Proposition 2.3.2, with q1 > 0, E[�D�] = E[�D;h]

decreases in � when � � �L;D, and E[�D�] = E[�D;l] is constant in � when � > �L;D.

Clearly, E[�S�] is also constant in �. By comparing lim�!0E[�
D;h;�] and E[�S�] above,

we have lim�!0E[�
D;h;�] = lim�!0E[�

D;h(qD;h1 (�); v;�)] � lim�!0E[�
D;h(qS�1 ; v;�)] �

E[�S(qS�1 ; v)] = E[�
S�], where the last inequality is due to � > �. Note that in the extreme

case � = �, lim�!0E[�
D;h(q1; v;�)] = E[�S(q1; v)]. Thus, in this extreme case, we have

lim�!0E[�
D;h;�] = E[�S�]. Because E[�S�] is increasing in �, if we decrease � by starting

with � = �, there exists a threshold 4 � 0 such that for � � � � 4, there exists a �L,

�L < �L;D, at which E[�D�] = E[�D;h] = E[�S�]. In addition, single rollover is optimal i¤

� � �L. This proves claim ii.a). When � � � > 4, no � can set E[�D�] = E[�S�]. In this

case, dual rollover is optimal. This proves claim ii.b). �

Proof of Proposition 2.4.1

With high innovation, the �rm can pro�tably target P1B with V2 by setting p2 = �v�.

This increases the number of targeting strategies, from 3 in the low innovation cases, to 7:

[fBg; fP1NBg], [fBg; fP1B;P1NBg], [fP1NBg; fP1NBg], [fP1NBg; fP1B;P1NBg], [fB;P1NBg,

fP1NBg], [fB;P1NBg; fP1Bg], [fB;P1NBg; fP1B;P1NBg]: Based on our analysis, we �nd

that the strategies used in period 2 are L-L, L-M and H-H as listed in Proposition 2.4.1,

which result in [fBg; fP1B;P1NBg], [fBg; fP1NBg] and [fP1NBg; fP1NBg]. Similar to the

proof of Proposition 2.3.1, we investigate the conditions under which a certain strategy is

optimal and compute the expected waiting surplus. For brevity, we omit the details. �

Proof of Proposition 2.4.2

With p1 = Rf , we have s = minfn; q1g. The �rm�s pro�t is

E[�D;l(q1; Rf )] = E[Rf minfN; q1g � cq1]

+ �

Z �v(1+�)�c
�v

q1

0

[(�v� � c)x+ �(q1 �minfx; q1g)]f(x)dx
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+ �

Z 1

�v(1+�)�c
�v

q1

[(�v(1 + �)� c)(x�minfx; q1g)]f(x)dx: (6.12)

We have Rf = v � �vF
�
�v(1+�)�c

�v
q1

�
from (2.7), (2.8) and Proposition 2.4.1. Similar to

(6.7)-(6.8), we have (6.13)-(6.14) below. We need to investigate if and how many times

q1(p1) and p1(q1) cross each other in three steps. Step 1: For (6.13), how the optimal q1

changes as p1 increases; Step 2: For (6.14), how p1 changes as q1 increases; and Step 3:

Under which conditions (6.13) and (6.14) have crossing point(s).

q1(p1) = argmax
q1
E[�D;l(q1; p1)]; (6.13)

p1(q1) = v(1� �F (
�v(1 + �)� c

�v
q1)): (6.14)

Step 1:

@E[�D;l(q1; p1)]

@q1
= p1F (q1)� c� �[�v(1 + �)� c]F (

�v(1 + �)� c
�v

q1) + ��F (q1);

@E[�D;l(q1; p1)]

@q1

����
q1=0

= p1 � c� �[�v(1 + �)� c];

@E[�D;l(q1; p1)]

@q1

����
q1=1

= �� � c < 0;

and

@2E[�D;l(q1; p1)]

@q21
= f(q1)

�
�� � p1 +

�[�v(1 + �)� c]2
�v

f([1 + � � c=(�v)]q1)
f(q1)

�
:

Since f(�) has the MSLR property, if @
2E[�D;l(q1;p1)]

@q21
crosses 0, then it crosses at most once

(cross-once property). We also know @2E[�D;l(q1;p1)]
@p1@q1

= F (q1) > 0.

From @E[�D;l(q1;p1)]
@q1

���
q1=0

= p1 � c � �[�v(1 + �) � c], the shape of E[�D;l(q1; p1)] around

q1 = 0 depends on p1. Particularly, [@E[�D;l(q1; p1)]=@q1]jq1=0 < 0 if and only if p1 <

c + �[�v(1 + �)� c]. Therefore, argmaxq1 E[�D;l(q1; p1)] depends on the value of p1. Next
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we investigate argmaxq1 E[�
D;l(q1; p1)] in three cases described by increasing p1:

Case I): p1 = 0.

Case II): 0 < p1 � c+ �[�v(1 + �)� c]. This case has two subcases:

Case II.a): [@E[�D;l(q1; p1)]=@q1] < 0 for all q1 > 0 and all p1 2 (0; c+�[�v(1+ �)� c]).

Case II.b): [@E[�D;l(q1; p1)]=@q1] � 0 for some q1 > 0 and some p1 2 (0; c + �[�v(1 +

�)� c]).

Case III): p1 > c+ �[�v(1 + �)� c].

We analyze how the optimal q1 changes as p1 increases in all these cases in Lemmas 6.1.4

and 6.1.5, which are stated below but proved later.

Lemma 6.1.4 Under case II.b),

i) As p1 increases, the number of roots of [@E[�D;l(q1; p1)]=@q1] = 0 increases from zero to

one, and reaches �nally two.

ii) If there is no or one root for [@E[�D;l(q1; p1)]=@q1] = 0, then the optimal stocking level

is zero.

iii) If there are two roots for [@E[�D;l(q1; p1)]=@q1] = 0, then

E[�D;l(q�1 (p1); p1)] < E[�
D;l(q+1 (p1); p1)];

where q�1 (p1) and q
+
1 (p1) are the smaller and larger roots, respectively. Moreover, the smaller

root q�1 (p1) decreases in p1 and the larger root q
+
1 (p1) increases in p1.

iv) If p1 = c + �[�v(1 + �) � c], then E[�D;l(q1; p1)] �rst increases and then decreases.

Moreover, E[�D;l(q1; p1)] has a unique positive maximizer q+1 (p1), which is the larger root

for [@E[�D;l(q1; p1)]=@q1] = 0.

v) If there are two roots of [@E[�D;l(q1; p1)]=@q1] = 0, then there exists a critical unique

price pJ1 such that E[�
D;l(0; pJ1 )] = E[�

D;l(q+1 (p
J
1 ); p

J
1 )] and pJ1 < c + �[�v(1 + �)� c]. In

addition, E[�D;l(q+1 (p1); p1)] > (resp., <) E[�
D;l(0; p1)] when p1 > (resp., <) pJ1 .
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Lemma 6.1.5 For a given p1, there exists a maximizer qo1(p1) � 0 of E[�D;l(q1; p1)]. qo1(p1)

satis�es:

i) In cases I), II.a), and III),

qo1(p1) =

8>>>>>>>>><>>>>>>>>>:

0 if case I for p1 = 0;

0
if case II.a) for

0 < p1 � c+ �[�v(1 + �)� c];

the unique positive root of @E[�
D;l(q1;p1)]
@q1

= 0
if case III for

p1 > c+ �[�v(1 + �)� c]:

ii) In case II.b) for 0 < p1 � c+ �[�v(1 + �)� c],

qo1(p1) =

8<: 0 if 0 < p1 � pJ1 ;

q+1 (p1) if pJ1 � p1 � c+ �[�v(1 + �)� c];

where pJ1 and q
+
1 (p1) are de�ned in Lemma 6.1.4.

iii) In all cases, qo1(p1) is non-decreasing in p1 for all p1 � 0.

iv) If case II.a) occurs when 0 < p1 � c + �[�v(1 + �)� c], then combining cases I), II.a),

and III), qo1(p1) is continuous in p1 for all p1 � 0. If cases II.b) occurs when 0 < p1 �

c+�[�v(1+�)�c], then combining cases I), II.b), and III), qo1(p1) is continuous everywhere

except at p1 = pJ1 .

Step 2: Solving q1 from (6.14), we have q�11 (p1) = ( �v
�v(1+�)�c)F

�1( 1
�
(1 � p1

v
)). Clearly,

q1 decreases in p1. In addition, we know that q1 = 0 when p1 = v and q1 = 1 when

p1 = v(1� �); and it is impossible that p1 > v or p1 < v(1� �). For ease of exposition, we

de�ne the q�11 (p1) as

q�11 (p1) =

8<: ( �v
�v(1+�)�c)F

�1( 1
�
(1� p1

v
)) if v(1� �) � p1 � v;

1 if p1 < v(1� �):
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This extended function q�11 (p1) does not change the existence or not of the crossing point.

Step 3: Steps 1-2 show that if there is a crossing point between (6.13) and (6.14), then

the crossing point must be unique due to the non-decreasing property of qo1(p1) in (6.13) and

the decreasing property of q�11 (p1) in (6.14). In addition, a crossing point corresponds to

a unique vector (q1; p1; �;Wc; Rf ) satisfying the REE conditions except (2.11). Therefore,

to show the existence of the vector (q1; p1; �;Wc; Rf ), we just need to show that there is a

crossing point between (6.13) and (6.14). We denote the crossing point (if any) as (p1; q1).

Now let us study the conditions under which (6.13) and (6.14) have the crossing point.

If case II.a) occurs, then qo1(p1) is continuous and non-decreasing in p1 for all p1�s, and

there must be a crossing point.

If case II.b) occurs, then a crossing point does not exist if and only if all of the fol-

lowing conditions are satis�ed: v(1 � �) < pJ1 < v, and q+1 (p
J
1 ) > ( �v

�v(1+�)�c)F
�1( 1

�
(1 �

pJ1
v
)). Under these conditions, if we can show that there exists a unique a combination of

(q�1 ; p1; �;Wc; Rf ) and (q+1 ; p1; �;Wc; Rf ) satisfying the REE conditions except (2.11), then

we complete the proof of Proposition 2.4.2. According to Lemma 6.1.4, at the jump point

p1 = pJ1 , E[�
D;l(q+1 (p

J
1 ); p

J
1 )] = E[�D;l(0; pJ1 )] = �[�v(1 + �) � c]E(N), which means both

q1 = q+1 (p
J
1 ) and q1 = 0 maximize E[�D;l(q1; pJ1 )]. Therefore, if the �rm orders q1 = 0

with probability � (0 < � < 1) and q1 = q+1 (p
J
1 ) with probability 1 � �, then it can still

get the maximum pro�t. The resulting expected waiting surplus is ��vF (�v(1+�)�c
�v

� 0) +

(1� �)�vF (�v(1+�)�c
�v

q+1 (p
J
1 )) = (1� �)�vF (

�v(1+�)�c
�v

q+1 (p
J
1 )), and thus we must have � = 1,

Wc = (1 � �)�vF (�v(1+�)�c�v
q+1 (p

J
1 )) and p

J
1 = Rf = v �Wc. This means we need to show

that there exists a � satisfying pJ1 = v(1 � �(1 � �)F (�v(1+�)�c
�v

q+1 (p
J
1 ))). Since q

+
1 (p

J
1 ) >

( �v
�v(1+�)�c)F

�1( 1
�
(1 � pJ1

v
)), we have pJ1 > v(1 � �F (

�v(1+�)�c
�v

q+1 (p
J
1 ))). Moreover, we know

pJ1 < v, so we can always �nd a � 2 (0; 1) satisfying pJ1 = v(1��(1��)F (
�v(1+�)�c

�v
q+1 (p

J
1 ))).

Letting q+1 = q
+
1 (p

J
1 ) and q

�
1 = 0, we complete the proof. �

Proof of Lemma 6.1.4

i) When p1 = 0, [@E[�D;l(q1; p1)]=@q1] < 0 for all q1. From
@2E[�D;l(q1;p1)]

@p1@q1
> 0, we know that



www.manaraa.com

102

[@E[�D;l(q1; p1)]=@q1] increases as p1 increases. From the de�nition of case II.b) we know

that [@E[�D;l(q1; p1)] =@q1] � 0 for some q1 > 0 and some p1 2 (0; c + �[�v(1 + �) � c]).

Because [@E[�D;l(q1; p1)]=@q1] is continuous in p1, if we increase p1 by starting with p1 = 0,

then we can always �nd a bp1 2 (0; c+�[�v(1+�)�c]) such that [@E[�D;l(q1; bp1)]=@q1] = 0 for
some q1 > 0 and [@E[�D;l(q1; bp1)]=@q1] < 0 for other q1�s. Because [@E[�D;l(q1; p1)]=@q1] < 0
for all q1 > 0 when p1 < bp1, and [@E[�D;l(q1; p1)]=@q1] > 0 for some q1 > 0 when p1 > bp1,
we know that bp1 is unique. Next, we prove by contradiction that when p1 = bp1, there is
only one q1 > 0 at which [@E[�D;l(q1; p1)]=@q1] = 0. Suppose that there are two q1�s at

which [@E[�D;l(q1; p1)]=@q1] = 0. Because [@E[�D;l(q1; p1)]=@q1] < 0 for other q1�s, the sign

of [@2E[�D;l(q1; p1)]=@q21] changes more than once, which contradicts with the cross-once

property. Similarly, we can prove that it is impossible to have more than two q1�s at which

[@E[�D;l(q1; p1)]=@q1] = 0. Therefore, there is only one root for [@E[�D;l(q1; p1)]=@q1] = 0

when p1 = bp1, and there is no root for [@E[�D;l(q1; p1)]=@q1] = 0 when p1 < bp1.
Now we prove that when p1 > bp1, there are two roots for [@E[�D;l(q1; p1)]=@q1] = 0.

From analysis above we know that when p1 > bp1, [@E[�D;l(q1; p1)]=@q1] > 0 for some q1 > 0.
Because [@E[�D;l(q1; p1)]=@q1]jq1=0 < 0 and [@E[�D;l(q1; p1)]=@q1]jq1=1 < 0, we know that

there are at least two roots for [@E[�D;l(q1; p1)]=@q1] = 0. If there are more than two roots,

then the sign of [@2E[�D;l(q1; p1)]=@q21] must change more than once, which contradicts with

the cross-once property. Therefore, there are two roots for [@E[�D;l(q1; p1)]=@q1] = 0 when

p1 > bp1. Combining the analysis above, we get claim i).

ii) Because [@E[�D;l(q1; p1)]=@q1] < 0 for all q1 > 0 when p1 < bp1, the optimal stocking
level is zero. Similarly, because when p1 = bp1, [@E[�D;l(q1; p1)]=@q1] = 0 for only one q1 and
[@E[�D;l(q1; p1)]=@q1] < 0 for other q1�s, we know that the optimal stocking level is zero.

iii) When p1 > bp1, there are two roots for [@E[�D;l(q1; p1)]=@q1] = 0. Together with

[@E[�D;l(q1; p1)] =@q1]jq1=0 < 0 and [@E[�D;l(q1; p1)]=@q1]jq1=1 < 0, we know that as q1

increases, E[�D;l(q1; p1)] is decreasing for q1 � q�1 (p1), increases for q�1 (p1) � q1 � q+1 (p1),

and decreases for q1 � q+1 (p1). This implies E[�D;l(q�1 (p1); p1)] < E[�D;l(q+1 (p1); p1)].
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For p1 > bp1, [@E[�D;l(q1; p1)]=@q1] is positive only for q1 2 [q�1 (p1); q
+
1 (p1)]. Since

[@E[�D;l(q1; p1)]=@q1] increases in p1 for all q1�s, [@E[�D;l(q1; p1 + ")]=@q1] is positive over

a larger interval for q1 2 [q�1 (p1 + "); q+1 (p1 + ")] that includes the original interval. Thus,

q�1 (p1 + ") � q�1 (p1) and q+1 (p1 + ") � q+1 (p1).

iv) When p1 = c + �[�v(1 + �) � c], we have [@E[�D;l(q1; p1)]=@q1]jq1=0 = 0. With

[@E[�D;l(q1; p1)]=@q1]jq1=1 < 0 and the cross-once property, the only two possibilities for

E[�D;l(q1; p1)] is that (a) [@E[�D;l(q1; p1)]=@q1] < 0 for all q1 > 0, and (b) E[�D;l(q1; p1)] �rst

increases, reaches a root, and then decreases. As @2E[�D;l(q1;p1)]
@p1@q1

> 0, [@E[�D;l(q1; p1)]=@q1]

increases as p1 increases. So (a) implies that [@E[�D;l(q1; p1)]=@q1] < 0 for all q1 > 0 for

all p1 < c + �[�v(1 + �) � c], which violates the de�nition of case II.b). So (b) is the only

possible case. Further, q�1 (p1) = 0, and q
+
1 (p1) is the unique positive maximizer. Claim iv)

follows.

v) We �rst show that there is a unique pJ1 . Note that (a) E[�
D;l(0; p1)] = �[�v(1 + �)�

c]E(N) regardless of the value of p1, (b) E[�D;l(q1; p1)] is continuous and increasing in p1 for

each �xed q1 > 0, (c) E[�D;l(q1; bp1)] < E[�D;l(0; bp1)] for all q1�s, and (d) when p1 > bp1, there
are two roots for [@E[�D;l(q1; p1)]=@q1] = 0. Starting from p1 = bp1 and increasing p1, we can
always �nd a unique pJ1 at which E[�

D;l(0; pJ1 )] = E[�
D;l(q+1 (p

J
1 ); p

J
1 )]. Further, if p1 < p

J
1 ,

then E[�D;l(q+1 (p1); p1)] < E[�D;l(q+1 (p1); p
J
1 )] � E[�D;l(q+1 (p

J
1 ); p

J
1 )] = E[�D;l(0; pJ1 )]. If

p1 > p
J
1 , thenE[�

D;l(q+1 (p1); p1)]� E[�D;l(q+1 (pJ1 ); p1)]> E[�D;l(q+1 (pJ1 ); pJ1 )] = E[�D;l(0; pJ1 )].

Next we show that pJ1 < c+�[�v(1+�)�c] by contradiction. If pJ1 = c+�[�v(1+�)�c],

we know E[�D;l(0; pJ1 )] < E[�
D;l(q+1 (p

J
1 ); p

J
1 )] from iv), which violates the de�nition of pJ1 .

Because E[�D;l(q+1 (p1); p1)] increases in p1 and E[�
D;l(0; p1)] is constant in p1, if pJ1 >

c + �[�v(1 + �) � c], then we again have E[�D;l(0; pJ1 )] < E[�D;l(q+1 (p
J
1 ); p

J
1 )]. Therefore,

pJ1 < c+ �[�v(1 + �)� c]. �

Proof of Lemma 6.1.5

i) Case I): When p1 = 0,
@E[�D;l(q1;p1)]

@q1
= �c� �[�v(1 + �)� c]F (�v(1+�)�c

�v
q1) + ��F (q1) < 0

all q1. This means q1 = 0 is the optimal solution.
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Case II.a): When 0 < p1 < c + �[�v(1 + �) � c], @E[�
D;l(q1;p1)]
@q1

< 0 for all q1 � 0. So

q1 = 0 maximizes E[�D;l(q1; p1)]. By a limit argument, when p1 = c+ �[�v(1 + �)� c], we

have @E[�D;l(q1;p1)]
@q1

� 0 for all q1 � 0. E[�D;l(q1; p1)] cannot be constant over an interval of

q1, otherwise [@2E[�D;l(q1; p1)]=@q21] is zero over the interval, which violates the cross-once

property. Thus, qo1(p1) = 0 when p1 = c+ �[�v(1 + �)� c].

Case III): When p1 > c + �[�v(1 + �) � c], by combining @E[�D;l(q1;p1)]
@q1

���
q1=0

> 0 ,

@E[�D;l(q1;p1)]
@q1

���
q1=1

< 0 and the cross-once property, we know that E[�D;l(q1; p1)] is unimodal.

In addition, there exists a unique positive root for @E[�
D;l(q1;p1)]
@q1

= 0, and this unique positive

root maximizes E[�D;l(q1; p1)].

ii) According to Lemma 6.1.4, when 0 < p1 � pJ1 , qo1(p1) = 0 for the scenarios in which

there is zero or one root, or there are two roots but E[�D;l(0; p1)] � E[�D;l(q+1 (p1); p1)].

When pJ1 � p1 � c+�[�v(1+�)�c], there are two roots andE[�D;l(0; p1)] � E[�D;l(q+1 (p1); p1)].

iii) For cases I) and II.a), qo1(p1) is constant in p1. For case II.b), we have increasing

q+1 (p1) from Lemma 6.1.4.iii). We can prove the increasing property of q
o
1(p1) for case III) in

the same way as the proof of Lemma 6.1.4.iii) except that there is a single root here. This

single root satis�es the properties that q+1 (p1) satis�es in Lemma 6.1.4.iii).

iv) Cases I), II.a), and III): The unique root of [@E[�D;l(q1; p1)]=@q1] = 0 is continuous in

p1 in case III). From the analysis for case II.a) above, we know that when p1 = c+�[�v(1+

�)�c], q1 = 0 is maximizer for E[�D;l(q1; p1)] as well as the unique root for @E[�
D;l(q1;p1)]
@q1

= 0.

Therefore, qo1(p1) is continuous in p1 for all p1 � 0 when combining cases I), II.a), and III).

Cases I), II.b), and III): Notice that when p1 > c + �[�v(1 + �) � c], qo1(p1) is the

unique root of [@E[�D;l(q1; p1)]=@q1] = 0 and thus is continuos. When pJ1 � p1 � c +

�[�v(1 + �)� c], qo1(p1) = q+1 (p1) is always the larger root of [@E[�D;l(q1; p1)]=@q1] = 0 and

is also continuous. Because there is a unique positive root of [@E[�D;l(q1; p1)]=@q1] = 0

when p1 > c + �[�v(1 + �) � c], the unique positive root of [@E[�D;l(q1; p1)]=@q1] = 0 is

corresponding to q+1 (p1) rather than q
�
1 (p1) for p

J
1 � p1 � c + �[�v(1 + �) � c]. That

is, the unique positive root of [@E[�D;l(q1; p1)]=@q1] = 0 when p1 > c + �[�v(1 + �) � c]
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evolves from q+1 (p1) for p
J
1 � p1 � c+ �[�v(1 + �)� c]. Otherwise, we would need another

root corresponding to q+1 (p1), which violates the fact that there is a unique positive root

of [@E[�D;l(q1; p1)]=@q1] = 0 when p1 > c + �[�v(1 + �) � c]. So, qo1(p1) is continuous at

p1 = c+ �[�v(1 + �)� c]. Finally, qo1(p1) jumps from 0 to q+1 (p
J
1 ) only at p1 = p

J
1 . �

Proof of Proposition 2.4.3

We have argued for the strategies L and H in the main body. Similar to the proof of Pro-

position 2.3.1, we can investigate the conditions under which a certain strategy is optimal.

In case [p1 = Rf ], following (2.12) and (2.15), we have w(q1; Rf ; 1) =
R �v(1+�)�c

�v
q1

0 1� [�v(1+

�) � �v�]f(x)dx + 0 = �vF (�v(1+�)�c
�v

q1). In case [p1 = v], if � � �v��c
�v(1+�)�c , then we can

compute w(q1; v; 0) in the same way as in [p1 = Rf ]; if � >
�v��c

�v(1+�)�c , then w(q1; v; 0) = 0

since the �rm always uses H strategy. �

Lemma 6.1.6 (High innovation) With � > �v��c
�v(1+�)�c , there is no REE under single

rollover where p�1 = v and � = 0.

Proof. If there is an REE with p�1 = v and � = 0, then we have Rf < v. Otherwise,

if Rf = v, then � = 1. However, with p1 = v and � = 0, we have w(q1; v; 0) = 0 from

Proposition 2.4.3, which leads to Rf = v, a contradiction with Rf < v. Thus, such an REE

does not exist.

Proving Proposition 2.4.4 requires two results which are stated and proved below as

Lemmas 6.1.7 and 6.1.8. Lemmas 6.1.7 and 6.1.8 are analogous to Proposition 2.3.2 but for

the case with high innovation under dual rollover and the case with high innovation under

single rollover, respectively.

Lemma 6.1.7 (High innovation) Under dual rollover, there exists a unique REE. In

addition, a �H;D exists such that if � � �H;D, then the �rm sets the high price p�1 = v;

otherwise, the �rm sets the low price p�1 = Rf .

Proof. From Proposition 2.4.1, with p1 = v, the strategies in period 2 depend on � and

can be divided into three cases; while with p1 = Rf , the strategies hold for all �s. De�ne
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E[�D;h�All(qD;h1 (�); v;�)] as the �rm�s total pro�t with p1 = v across these three cases. After

writing the pro�ts for these three cases, it is easy to show that E[�D;h�All(qD;h1 (�); v;�)] is

continuous in � by checking the limits of the integrals and the integrands at � = �v��c
�v(1+�)�c

and � = �v��c
�v�+��c . As in Proposition 2.3.2, we can show that E[�

D;h�All(qD;h1 (�); v;�)] is

non-increasing in � by using the Envelope Theorem.

If a unique (qD;l1 ; pD;l1 ; �;Wc; Rf ) satisfying the REE conditions except (2.11) exists, then

E[�D;l(pD;l1 ; q
D;l
1 )] in (6.12) is constant in �. If the vector of numbers (qD;l1 ; pD;l1 ; �;Wc; Rf )

does not exist, then from Proposition 2.4.2, E[�D;l(pD;l1 ; q
D;l
1 )] = �[�v(1+�)�c]E(N) is also

constant in �. De�ning �H;D as �H;D = inff� : E[�D;h�All(qD;h1 (�); v;�)] � E[�D;l(pD;l1 ; q
D;l
1 )],

where 0 � � < 1g, we have the desired result.

Lemma 6.1.8 (High innovation) Under single rollover, there exists either a unique REE

or a unique zero-order-mixed REE. In addition, there exists a �H;S, 0 � �H;S � �v��c
�v(1+�)�c ,

such that if � � �H;S, then the �rm sets the high price p�1 = v; otherwise, the �rm sets the

low price p�1 = Rf .

Proof. The proof of Lemma 6.1.8 is similar to that of Lemma 6.1.7. The di¤erence is

that for � > �v��c
�v(1+�)�c , according to Lemma 6.1.6, the only equilibrium is with p�1 = Rf and

� = 1. So, we de�ne �H;S = minf��; �v��c
�v(1+�)�cg, where �� = inff� : E[�

S;h(qS;h1 (�); v;�)] �

E[�S;l(qS;l1 ; p
S;l
1 )], where 0 � � < 1g, E[�S;h(qS;h1 (�); v;�)] is the pro�t with p1 = v for

� � �v��c
�v(1+�)�c and E[�

S;l(qS;l1 ; p
S;l
1 )] is the pro�t with p1 = Rf . The desired result follows.

Proof of Proposition 2.4.4

i) Note that when � � �H;S, we haveE[�D�] � E[�D;h] = E[�D;h(qD;h1 ; v)] > E[�D;h(qS;h1 ; v)]

> E[�S;h(qS;h1 ; v)] = E[�S;h] = E[�S�]. We have the last inequality by observing that when

� � �H;S � �v��c
�v(1+�)�c , the expressions of E[�

D;h(q1; v)] and E[�S;h(q1; v)] are structurally

the same, and the only di¤erence between them lies in � v.s. �, and � > �. Therefore,

E[�D�] > E[�S�] when � � �H;S. This implies �H > �H;S.

From the proofs of Lemmas 6.1.7 and 6.1.8, we know that E[�D�] is continuous in �,

and E[�S�] is continuous in � except that if �H;S = �v��c
�v(1+�)�c , then there may be a drop at
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� = �H;S. In addition, E[�D�] (resp., E[�S�]) is non-increasing in � when � < �H;D (resp.,

� < �H;S), and constant in � when � � �H;D (resp., � � �H;S). Since E[�D�] > E[�S�]

when � � �H;S, if there does not exist a �H such that E[�S�] = E[�D�] at � = �H , then

dual rollover is always better than single rollover. This proves claim i.a).

Next, we prove claim i.b). First, we can prove that if �H;S � �H;D, then �H does not

exist. This is because when �H;S � �H;D we have (a) for � < �H;D � �H;S, E[�D�] > E[�S�],

and (b) for � � �H;D, E[�D�] is continuous and constant in � and E[�S�] is non-increasing

in �. Facts (a) and (b) together show that E[�D�] > E[�S�] for all ��s, and thus �H does not

exist. So, if �H exists, we must have �H;S < �H;D. In addition, when � > �H;D > �H;S, both

E[�S�] and E[�D�] are continuous and constant. So, if �H exists, we must have �H � �H;D.

Together with the fact �H > �H;S from analysis above, we know �H;S < �H � �H;D.

When � > �H , because E[�S�] is continuous and constant and E[�D�] is continuous and

non-increasing, we have E[�S�] � E[�D�]. When � � �H;S < �H , we have E[�D�] > E[�S�]

from our analysis above. In addition, because E[�D�] is non-increasing while E[�S�] is

constant when �H;S < � < �H and E[�D�] = E[�S�] when � = �H , we have again E[�D�] >

E[�S�]. Therefore, E[�D�] > E[�S�] when � < �H . Combining the cases of � > �H and

� < �H , we get claim i.b).

ii) If there is a zero-order-mixed REE under single rollover, then E[�S�] = �[�v(1+ �)�

c]E(N). Since E[�D�] � E[�D;h] = E[�D;h(qD;h1 ; v)] � E[�D;h(0; v)] = �[�v(1+�)�c]E(N),

dual rollover is always better than single rollover.

Proof of Proposition 2.4.5

Claim i) is from the proof of Proposition 2.4.4: when � � �H;S, that is, when E[�S�] =

E[�S;h], we have E[�D�] > E[�S�]. This shows that single rollover can outperform dual

rollover only when E[�S�] = E[�S;l]. If E[�S;l] < E[�D;l], then E[�D�] � E[�D;l] > E[�S;l],

which means that �H does not exist. Thus, E[�S;l] � E[�D;l] is a necessary condition for

the existence of �H . Next we prove that E[�S;l] � E[�D;l] is also the su¢ cient condition for

the existence of �H . Note that E[�D�] > E[�S�] when � � �H;S, and E[�D�] is continuous
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and constant in � when � � �H;D, but E[�S�] is non-increasing in � and E[�S�] = E[�S;l]

when � � �H;S. Hence, if E[�S;l] � E[�D;l], then such a �H must exist. �

6.2 Proofs related to Chapter 3

The proofs of Lemma 3.4.1 i) and ii.a) are similar to those of Lemma 2 in Liang et al.

(2011a). For ease of reading, we write down all the steps below. Before we prove Lemma

3.4.1, we �rst need to prove Lemma 6.2.1.

Lemma 6.2.1 (S-DR) For a given p1, there exists a maximizer qo1(p1) � 0 of �S-DR(q1; p1; �).

Furthermore, qo1(p1) satis�es:

i)

qo1(p1) =

8<: 0 if 0 < p1 � c+ �[v(1 + �)� c];

F�1( p1�c��[v(1+�)�c]
p1��[v(1+�)�c]��� ) if p1 > c+ �[v(1 + �)� c]

ii) qo1(p1) is continuous and non-decreasing in p1 for all p1 � 0.

Proof. From (3.6), we have @�S-DR (q1;p1;�)
@q1

= p1F (q1)� c� �[v(1 + �)� c]F (q1) + ��F (q1),
@2�S-DR (q1;p1;�)

@q21
= f(q1)f�[v(1 + �) + � � c]� p1g, @�

S-DR (q1;p1;�)
@q1

���
q1=0

= p1 � c� �[v(1 + �)� c]

and @�S-DR (q1;p1;�)
@q1

���
q1=1

= �� � c < 0.

i) We investigate the maximizer qo1(p1) of �
S-DR(q1; p1; �) in three cases described by

increasing p1:

� p1 < �[v(1 + �) + � � c]: Since c + �[v(1 + �) � c] > �[v(1 + �) + � � c], we have
@2�S-DR (q1;p1;�)

@q21
> 0 and @�S-DR (q1;p1;�)

@q1

���
q1=0

< 0. Considering @�S-DR (q1;p1;�)
@q1

���
q1=1

< 0, we have

qo1(p1) = 0.

� �[v(1 + �) + � � c] � p1 � c + �[v(1 + �) � c] : We have @2�S-DR (q1;p1;�)

@q21
� 0 and

@�S-DR (q1;p1;�)
@q1

���
q1=0

� 0. Again, we have qo1(p1) = 0.

� p1 > c+�[v(1+�)�c] :We have @
2�S-DR (q1;p1;�)

@q21
< 0 and @�S-DR (q1;p1;�)

@q1

���
q1=0

> 0. Considering
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@�S-DR (q1;p1;�)
@q1

���
q1=1

< 0, we know that qo1(p1) is the unique solution for
@�S-DR (q1;p1;�)

@q1
= 0, that

is, F (qo1) =
p1�c��[v(1+�)�c]
p1��[v(1+�)�c]��� . Together, these three cases prove i).

ii) For p1 = c + �[v(1 + �) � c], we have F�1( p1�c��[v(1+�)�c]p1��[v(1+�)�c]��� ) = F
�1(0) = 0, so qo1(p1)

is continuous in p1 � 0. Since p1�c��[v(1+�)�c]
p1��[v(1+�)�c]��� increases in p1 > c + �[v(1 + �) � c], q

o
1(p1)

is non-decreasing in p1 � 0.

Proof of Lemma 3.4.1

From the rational expectation equilibrium conditions (i), (iii) and (iv), we have p1 = Rf =

v � (v � �)F (q1). Together with condition (ii), if we can obtain unique q1 and p1 satisfying

the two equations 8<: q1 = argmaxq1 �
S-DR(q1; p1; �);

p1 = v � (v � �)F (q1);
(6.15)

then there is a unique equilibrium for any given �. For any given �, by treating the right-

hand sides in (6.15) as functions of p1 and q1, we have

q1(p1) = argmax
q1
�S-DR(q1; p1; �); (6.16)

p1(q1) = v � (v � �)F (q1): (6.17)

We prove the result in three steps. Step 1: Optimal q1 in (6.16) is continuous and

non-decreasing in p1 as shown in Lemma 6.2.1 above. Step 2: From (6.17), we see that

p1 decreases in q1. Also, p1 = v when q1 = 0; p1 = � when q1 = 1; and � � p1 � v.

Step 3: From Steps 1-2, there must be a crossing point of (6.16) and (6.17). In addition,

this crossing point is unique due to the non-decreasing property of q1(p1) in (6.16) and the

decreasing property of p1(q1) in (6.17). So far, we have proved i).

With � < �max, i.e., c+�[v(1+ �)� c] < v, from the proof above, pS-DR1 (�) > c+�[v(1+

�)� c] and qS-DR1 (�) > 0 are unique, and they must satisfy the two equations

p1 = v � (v � �)F (q1); (6.18)
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F (q1) =
p1 � c� �[v(1 + �)� c]
p1 � �[v(1 + �)� c]� ��

: (6.19)

This proves claim ii.a).

Next, we prove ii.b) by contradiction. From (6.18), as � changes, qS-DR1 (�) and pS-DR1 (�)

must change in the opposite direction. Suppose that as � increases, qS-DR1 (�) increases and

pS-DR1 (�) decreases. Then, the right-hand side of (6.19) decreases as � increases and pS-DR1 (�)

decreases. However, the left-hand side of (6.19) increases as qS-DR1 (�) increases. This leads

to a contradiction. Thus, qS-DR1 (�) must decrease while pS-DR1 (�) increases in �.

With � � �max, i.e., c+ �[v(1 + �)� c] � v, we know that qo1(p1) becomes positive only

when p1 > c + �[v(1 + �) � c] � v. So, the crossing point of (6.16) and (6.17) is given by

qS-DR1 (�) = 0 and pS-DR1 (�) = v. This proves iii). �

6.3 Proofs related to Chapter 4

Proof of Proposition 4.4.1

Proposition 4.4.1 follows from the discussion above it. �

Proof of Lemma 4.4.2

Lemma 4.4.2 can be obtained immediately from the pro�t expressions listed in the proof of

Proposition 4.4.3. �

Proof of Proposition 4.4.3

To show Proposition 4.4.3, we consider two cases: �o=�r � 2 and 2 � �=c � �o=�r � 2. In

both cases, we evaluate the expected pro�ts of both strategies for all nine possible stocking

levels.

Case 1: �o=�r � 2. According to di¤erent stocking levels in the two channels, we have the

following nine sub-cases to consider. We use �ROi and �ORi to denote the �rm�s expected

pro�t under RO and OR strategies for case 1.i, respectively. Using equations (4.5) and (4.6),

we can obtain the �rm�s expected pro�t for all sub-cases.
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Case 1.1: Qr = �r � �r, Qo = �o � �o.

�RO1 = (p� c)(�r + �o)� (p� c)�r � (p� c)�o;

�OR1 = (p� c)(�r + �o)� (p� c)�r � (p� c)�o:

Case 1.2: Qr = �r � �r, Qo = �o.

�RO2 = (p� c)(�r + �o)� (p� c)�r � pk�o;

�OR2 = (p� c)(�r + �o)� (p� c)�r � pk�o + (p� �)k�r:

Case 1.3: Qr = �r � �r, Qo = �o + �o.

�RO3 = (p� c)(�r + �o)� (p� c)�r � c�o;

�OR3 = (p� c)(�r + �o)� (p� c)�r � c�o + (p� �)(1� k)�r:

Case 1.4: Qr = �r, Qo = �o � �o.

�RO4 = (p� c)(�r + �o)� pk�r � (p� c)�o + (p� �)k(1� k)�r;

�OR4 = (p� c)(�r + �o)� pk�r � (p� c)�o:

Case 1.5: Qr = �r, Qo = �o.

�RO5 = (p� c)(�r + �o)� pk�r � pk�o + (p� �)k2�r;

�OR5 = (p� c)(�r + �o)� pk�r � pk�o + (p� �)k2�r:

Case 1.6: Qr = �r, Qo = �o + �o.

�RO6 = (p� c)(�r + �o)� pk�r � c�o;

�OR6 = (p� c)(�r + �o)� pk�r � c�o + (p� �)k(1� k)�r:
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Case 1.7: Qr = �r + �r, Qo = �o � �o.

�RO7 = (p� c)(�r + �o)� c�r � (p� c)�o + (p� �)(1� k)�r;

�OR7 = (p� c)(�r + �o)� c�r � (p� c)�o:

Case 1.8: Qr = �r + �r, Qo = �o.

�RO8 = (p� c)(�r + �o)� c�r � pk�o + (p� �)k�r;

�OR8 = (p� c)(�r + �o)� c�r � pk�o:

Case 1.9: Qr = �r + �r, Qo = �o + �o.

�RO9 = (p� c)(�r + �o)� c�r � c�o;

�OR9 = (p� c)(�r + �o)� c�r � c�o:

It is easy to see that �RO1 = �OR1, �RO2 � �OR2, �RO3 � �OR3, �RO4 � �OR4, �RO5 = �OR5,

�RO6 � �OR6, �RO7 � �OR7, �RO8 � �OR8, and �RO9 = �OR9. Next, we rank the above pro�t

expressions based on the pro�t contribution margin of the product.

Suppose p = 2c. Then �RO1 = �OR1, �RO2 = �OR8, �RO3 = �OR7, �RO4 = �OR6,

�RO5 = �OR5, �RO6 = �OR4, �RO7 = �OR3, �RO8 = �OR2 and �RO9 = �OR9. Because �RO =

maxf�RO1; �RO2; �RO3; �RO4; �RO5; �RO6; �RO7; �RO8; �RO9g and �OR = maxf�OR1; �OR2; �OR3;

�OR4; �OR5; �OR6; �OR7; �OR8; �OR9g, we have �RO = �OR.

Suppose p < 2c. We shall prove claim ii) by considering two cases: p � c=(1 � k) and

c=(1� k) < p � 2c.

First, consider the case p � c=(1� k). Using the condition p� c � pk < c, we see that

�RO1 � �RO2 � �RO3, �RO1 � �RO6 � �RO9, �RO4 � �RO5 and �RO7 � �RO8. It follows that

�RO = maxf�RO1; �RO4; �RO7g:
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Moreover, we can show that �OR1 � �OR4 � �OR7 � �OR9, �OR2 � �OR5, �OR2 � �OR3 �

�OR6, and �OR7 � �OR8. Thus,

�OR = maxf�OR1; �OR2g:

Because �RO1 = �OR1, in order to rank �RO and �OR, it is su¢ cient to compare �OR2 vs.

�RO4, and �OR2 vs. �RO7.

From the expressions of �OR2 and �RO7,

�OR2 � �RO7 = (p� c)(�o � 2�r) + ��r � [p�o � 2(p� �)�r]k:

Therefore, when k < k1 = [(p� c)(�o� 2�r)+ ��r]=[p�o� 2(p� �)�r], we have �OR2 > �RO7.

Similarly, from the expressions of �OR2 and �RO4,

�OR2 � �RO4 = (p� c)(�o � �r) + [p�rk � p�ok + (p� �)�rk2]:

It is straightforward to verify that p�rk�p�ok+(p��)�rk2 decreases in k for 0 � k � 1=2.

It must be true that, when k � k2, �OR2 � �RO4; otherwise �OR2 � �RO4. Therefore, when

k � minfk1; k2g, �OR � �RO; otherwise �OR � �RO.

Next, consider the case c=(1� k) < p � 2c. Using the condition c=(1� k) < p � 2c, we

can show that �RO2 � �RO1, �RO2 � �RO3 and �RO4 � �RO6 � �RO9. Therefore,

�RO = maxf�RO2; �RO4; �RO5; �RO7; �RO8g:

Similarly, we also can show that �OR8 � �OR9, �OR8 � �OR7, �OR4 � �OR1, and �OR2 �

�OR3. Consequently,

�OR = maxf�OR2; �OR4; �OR5; �OR6; �OR8g:
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Note that �RO2 � �OR2, �RO4 � �OR4, �RO5 = �OR5 and �RO8 � �OR8. In order to obtain the

desired result, it is su¢ cient to show either �OR2 � �RO4, �OR2 � �RO8, and �OR2 � �RO7

or �OR6 � �RO4, �OR6 � �RO8, and �OR6 � �RO7.

From the expressions of �OR2, �RO4, �RO7, and �RO8 , we have

�OR2 � �RO4 = (p� c� pk)(�o � �r) + (p� �)�k2 > 0;

�OR2 � �RO7 = (2c� p)�r + (p� c� pk)�0 + (p� �)(2k � 1)�r

� (2c� p)�r + 2(p� c� pk)�r + (p� �)(2k � 1)�r � 0;

�OR2 � �RO8 = (2c� p)�r � 0:

Therefore, �OR � �RO for k 2 [0; 1=2] when c=(1� k) < p � 2c:

Combining the two cases p � c=(1 � k) and c=(1 � k) < p � 2c, we prove claim ii) for

the case �o=�r � 2.

Suppose p > 2c. We shall prove claim iii) by consider two cases: 2c < p < c=k and

p � c=k.

Suppose 2c < p < c=k. In this case, pk < p� c and pk < c. Using these conditions, we

can show that �RO5 � �RO2 � �RO1, �RO2 � �RO3,�RO5 � �RO6 � �RO9, �RO5 � �RO4, and

�RO8 � �RO7. Therefore,

�RO = maxf�RO5; �RO8g:

It is also straightforward to show that �OR8 � �OR9, �OR8 � �OR7, �OR8 � �OR1 and

�OR8 � �OR4. Hence,

�OR = maxf�OR2; �OR3; �OR5; �OR6; �OR8g:
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Notice that

�RO8 � �OR2 = (p� 2c)�r > 0;

�RO8 � �OR3 = (p� 2c)�r + (c� pk)�o + (p� �)(2k � 1)�r

> (p� 2c)�r + 2(c� pk)�r + (p� �)(2k � 1)�r � 0;

�RO8 � �OR6 = (pk � c)(�r � �o) + (p� �)�rk2 > 0:

Together with the facts that �RO5 = �OR5 and �RO8 � �OR8, we complete the proof for

claim iii) when 2c < p < c=k.

Suppose p � c=k. It then follows that �RO9 � �RO6 � �RO3 � �RO2 � �RO1, �RO8 �

�RO5, and �RO8 � �RO7 � �RO4. Consequently,

�RO = maxf�RO8; �RO9g:

We also can show that when p � c=k, �OR9 � �OR8 � �OR7, �OR9 � �OR4, �OR9 � �OR1,

�OR3 � �OR2, and �OR6 � �OR5. Then, �OR = maxf�OR3; �OR6; �OR9g. Since �RO9 = �OR9,

we just need to compare �RO8 vs. �OR3, and �RO8 vs. �OR6.

Notice that

�RO8 � �OR3 = c(�o � 2�r) + ��r � [p�o � 2(p� �)�r]k:

It is straightforward to see that when k < k3 = [c(�o � 2�r) + ��r]=[p�o � 2(p � �)�r], we

have �RO8 > �OR3. We also know that

�RO8 � �OR6 = c(�o � �r) + pk(�r � �o) + (p� �)k2�r:

It is easy to verify that pk(�r � �o) + (p � �)k2�r decreases in k for k 2 [0; 1=2]. Since

�o � 2�r, we know �RO8��OR6 > 0 when k = 0. Thus, when k � k4, we have �RO8 � �OR6.

Therefore, when k � minfk3; k4g, �RO � �OR; otherwise �RO � �OR. Combining the two
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cases 2c < p < c=k and p � c=k, by now we already prove claim iii) for case 1 (�o=�r � 2):

Case 2: 2� �=c � �o=�r � 2. Similar to case 1, we have nine sub-cases to consider. Again,

using equations (4.5) and (4.6), we can obtain the �rm�s expected pro�t for all sub-cases.

Case 2.1: Qr = �r � �r, Qo = �o � �o.

�RO1 = (p� c)(�r + �o)� (p� c)�r � (p� c)�o;

�OR1 = (p� c)(�r + �o)� (p� c)�r � (p� c)�o:

Case 2.2: Qr = �r � �r, Qo = �o.

�RO2 = (p� c)(�r + �o)� (p� c)�r � pk�o;

�OR2 = (p� c)(�r + �o)� (p� c)�r � pk�o + (p� �)[�rk(1� 2k) + �ok2]:

Case 2.3: Qr = �r � �r, Qo = �o + �o.

�RO3 = (p� c)(�r + �o)� (p� c)�r � c�o;

�OR3 = (p� c)(�r + �o)� (p� c)�r � c�o + (p� �)[�r(4k2 � 3k + 1) + �o(1� 2k)k]:

Case 2.4: Qr = �r, Qo = �o � �o.

�RO4 = (p� c)(�r + �o)� pk�r � (p� c)�o + (p� �)k(1� k)�r;

�OR4 = (p� c)(�r + �o)� pk�r � (p� c)�o:

Case 2.5: Qr = �r, Qo = �o.

�RO5 = (p� c)(�r + �o)� pk�r � pk�o + (p� �)k2�r;

�OR5 = (p� c)(�r + �o)� pk�r � pk�o + (p� �)k2�r:
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Case 2.6: Qr = �r, Qo = �o + �o.

�RO6 = (p� c)(�r + �o)� pk�r � c�o;

�OR6 = (p� c)(�r + �o)� pk�r � c�o + (p� �)k(1� k)�r:

Case 2.7: Qr = �r + �r, Qo = �o � �o.

�RO7 = (p� c)(�r + �o)� c�r � (p� c)�o + (p� �)[�r(4k2 � 3k + 1) + �o(1� 2k)k];

�OR7 = (p� c)(�r + �o)� c�r � (p� c)�o:

Case 2.8: Qr = �r + �r, Qo = �o.

�RO8 = (p� c)(�r + �o)� c�r � pk�o + (p� �)[�r(1� 2k)k + �ok2];

�OR8 = (p� c)(�r + �o)� c�r � pk�o:

Case 2.9: Qr = �r + �r, Qo = �o + �o.

�RO9 = (p� c)(�r + �o)� c�r � c�o;

�OR9 = (p� c)(�r + �o)� c�r � c�o:

Note that, compared with the expressions in case 1, only �RO7, �RO8, �OR2, and �OR3 are

di¤erent.

It can be veri�ed that �RO1 = �OR1, �RO2 � �OR2, �RO3 � �OR3, �RO4 � �OR4, �RO5 =

�OR5, �RO6 � �OR6,�RO7 � �OR7, �RO8 � �OR8, and �RO9 = �OR9. As in case 1, we shall

rank the above expected pro�t expressions based on the pro�t contribution margin of the

product.

Suppose p = 2c. Notice that the relations �RO1 = �OR1, �RO2 = �OR8, �RO3 = �OR7,

�RO4 = �OR6, �RO5 = �OR5, �RO6 = �OR4, �RO7 = �OR3, �RO8 = �OR2 and �RO9 = �OR9

continue to hold. Thus, �RO = �OR.
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Suppose p < 2c. Again, We shall prove claim ii by considering two cases: p � c=(1� k)

and c=(1� k) < p � 2c.

First, consider the case p � c=(1 � k). It can be veri�ed that �RO1 � �RO2 � �RO3 �

�RO6 � �RO9, �RO4 � �RO5, and �RO7 � �RO8. Hence,

�RO = maxf�RO1; �RO4; �RO7g:

Using the conditions p � c=(1 � k) and �r � �o < 2�r, we can show that �OR1 � �OR4 �

�OR7 � �OR9, �OR3 � �OR6, �OR2 � �OR5, and �OR7 � �OR8. Thus,

�OR = maxf�OR1; �OR2; �OR3g.

It is straightforward to see that �RO7 > �OR3. Together with the fact �RO1 = �OR1, we

just need to compare �OR2 vs. �OR4, and �OR2 vs. �OR7 in order to show claim ii. Note

that

�OR2��RO7 = (2c�p)�r+(p�c�pk)�o+(p��)[�r(1�2k)(2k�1)�2�rk2+�ok2�k(1�2k)�o]:

Clearly, (p � �)[�r(1 � 2k)(2k � 1) � 2�rk2 + �ok2 � k(1 � 2k)�o] � pk�o, as a quadratic

function of k, �rst increases in k when k � [2(p � �)(2�r � �o) � p�o]=[6(p � �)(2�r � �o)],

and then decreases in k for k 2 [0; 1=2]. Notice that �OR2��RO7 > 0 when k = 0. It follows

that, when k � k5, �OR2 � �RO7; otherwise �OR2 � �RO7.

Also notice that

�OR2 � �RO4 = (�o � �r)[p� c� pk + (p� �)k2]:

It is easy to show that p� c�pk+(p� �)k2 decreases in k for k 2 [0; 1=2]. Therefore, when

k � minfk5; k6g, �OR2 � �RO4; �OR2 � �RO7. Combining with the facts that �RO1 = �OR1

and �RO7 � �OR3, we know that when k � minfk5; k6g, �OR � �RO; otherwise �OR � �RO.
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Suppose c=(1 � k) < p � 2c. Note that when c=(1 � k) < p � 2c, �RO2 � �RO1,

�RO2 � �RO3, �RO4 � �RO6 � �RO9, �OR8 � �OR9, �OR5 � �OR6, �OR8 � �OR7, and

�OR4 � �OR1. Then,

�RO = maxf�RO2; �RO4; �RO5; �RO7; �RO8g;

�OR = maxf�OR2; �OR3; �OR4; �OR5; �OR8g.

Note that

�OR2 � �RO4 = (�o � �r)[p� c� pk + (p� �)k2] > 0;

�OR2 � �RO8 = (2c� p)�r � 0;

�RO7 � �OR3 = (2c� p)(�o � �r) � 0:

Moreover, �OR2 � �RO2, �RO4 � �OR4, �RO8 � �OR8, and �OR5 = �RO5. Consequently, it

is su¢ cient to compare �OR2 vs. �RO7 in order to rank �RO and �OR. From the proof of

claim ii when p � c=(1 � k), we already know that, when k � k5, �OR2 � �RO7; otherwise

�OR2 � �RO7. Therefore, when k � k5, �OR � �RO; otherwise �OR � �RO. Combining the

two cases p � c=(1� k) and c=(1� k) < p � 2c, we prove claim ii for case 2:

Suppose p > 2c. As before, we also prove claim iii) in two cases: 2c < p < c=k and

p � c=k.

Suppose 2c < p < c=k. It is straightforward to verify that when 2c < p < c=k, we have

�RO5 � �RO2 � �RO1, �RO5 � �RO6 � �RO9, �RO2 � �RO3 and �RO2 � �RO3. Thus,

�RO = f�RO5; �RO7; �RO8g.

It is also easy to show that �OR8 � �OR1, �OR8 � �OR4, �OR8 � �OR7, and �OR8 � �OR9.

Thus,

�OR = maxf�OR2; �OR3; �OR5; �OR6; �OR8g.
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Notice that

�RO8 � �OR2 = (2p� c)�r > 0;

�RO8 � �OR6 = (c� pk)(�o � �r) + (p� �)[�rk(1� k) + �ok2] > 0;

�RO7 � �OR3 = (p� 2c)(�r � �o) < 0:

Together with the facts that �RO5 � �OR5 and �RO8 � �OR8, we just need to compare �RO8

vs. �OR3 in order to obtain the desired result. Also note that

�RO8��OR3 = (p�2c)�r+(c�pk)�o+(p��)[�r(1�2k)(2k�1)�2�rk2+�ok2�k(1�2k)�o]:

It is easy to see that �RO8 � �OR3 increases in k when k � [2(p� �)(2�r � �o)� p�o]=[6(p�

�)(2�r� �o)], otherwise it decreases in k. However, when k = 0, �RO8��OR3 � 0. It follows

that �RO8 � �OR3 when k � k7; otherwise �RO8 � �OR3. Thus, we conclude that when

k � k7, �RO � �OR, otherwise �RO � �OR.

Suppose p � c=k. Note that when p � c=k, �RO9 � �RO6 � �RO3 � �RO2 � �RO1,

�RO7 � �RO4, and �RO8 � �RO5. Therefore,

�RO = maxf�RO7; �RO8; �RO9g:

Moreover, we can also show that �OR9 � �OR8 � �OR7 � �OR4 � �OR1, �OR3 � �OR2 and

�OR6 � �OR5. Thus,

�OR = maxf�OR3; �OR6; �OR9g.

Combining with the facts �RO7 � �OR3 and �RO9 = �OR9, we just need to compare �RO8 vs.

�OR3 and �RO8 vs. �OR6 in order to obtain the desired result. Note that

�RO8 � �OR6 = (�r � �o)(pk � c� pk2 + �k2):

It is easy to verify that �RO8 � �OR6 decreases in k for k 2 [0; 1=2] and �RO8 � �OR6 > 0
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when k = 0. So, �RO8 � �OR6 when k � k8. From the proof of claim iii) for the case

2c < p < c=k, we know that �RO8 � �OR3 when k � k7. Hence, when k � minfk7; k8g,

we have �RO8 � �OR6 and �RO8 � �OR3. Therefore, when k � minfk7; k8g, �RO � �OR,

otherwise �RO � �OR. This completes our proof. �
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